NCCN Guidelines Version 2.2018
Thymomas and Thymic Carcinomas

*David S. Ettinger, MD/Chair †
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
*Douglas E. Wood, MD/Vice Chair ¶
Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
Dara L. Aisner, MD, PhD ≠
University of Colorado Cancer Center
Wallace Akerley, MD †
Huntsman Cancer Institute at the University of Utah
Jessica Bauman, MD ‡ †
Fox Chase Cancer Center
Joe Y. Chang, MD, PhD §
The University of Texas MD Anderson Cancer Center
Lucian R. Chirieac, MD ≠
Dana-Farber/Brigham and Women’s Cancer Center
Thomas A. D’Amico, MD ¶
Duke Cancer Institute
Malcolm M. DeCamp, MD ¶
Robert H. Lurie Comprehensive Cancer Center of Northwestern University
Thomas J. Dilling, MD, MS §
Moffitt Cancer Center
Michael Dobelbower, MD, PhD §
University of Alabama at Birmingham Comprehensive Cancer Center

Ramaswamy Govindan, MD †
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
Matthew A. Gubens, MD, MS †
UCSF Helen Diller Family Comprehensive Cancer Center
Mark Hennon, MD ¶
Roswell Park Cancer Institute
Leora Horn, MD, MSc †
Vanderbilt-Ingram Cancer Center
Rudy P. Lackner, MD ¶
Fred & Pamela Buffett Cancer Center
Michael Lanuti, MD ¶
Massachusetts General Hospital Cancer Center
Ticiiana A. Leal, MD †
University of Wisconsin Carbone Cancer Center
Leah J. Leisch, MD ¶
University of Alabama at Birmingham Comprehensive Cancer Center
Rogerio Lilienbaum, MD †
Yale Cancer Center/Smilow Cancer Hospital
Jules Lin, MD ¶
University of Michigan Comprehensive Cancer Center
Billy W. Loo, Jr., MD, PhD §
Stanford Cancer Institute
Renato Martins, MD, MPH †
Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

Gregory A. Otterson, MD †
The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
Karen Reckamp, MD, MS † ¶
City of Hope Comprehensive Cancer Center
Gregory J. Riely, MD, PhD † ♦
Memorial Sloan Kettering Cancer Center
Steven E. Schild, MD §
Mayo Clinic Cancer Center
Theresa A. Shapiro, MD, PhD ¥
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
James Stevenson, MD †
Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
Scott J. Swanson, MD ¶
Dana-Farber/Brigham and Women’s Cancer Center
Kurt Tauer, MD †
St. Jude Children’s Research Hospital/University of Tennessee Health Science Center
Stephen C. Yang, MD ¶
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

NCCN
Kristina Gregory, RN, MSN, OCN
Miranda Hughes, PhD

† Medical oncology ♦ Diagnostic/Interventional radiology
¶ Surgery/Surgical oncology ⌂ Pathology
§ Radiation oncology/Radiotherapy ☆ Patient advocate
≠ Pathology ♣ Internal medicine
¥ Hematology/Hematology oncology
*Discussion Section Writing Committee

NCCN Guidelines Panel Disclosures

Version 2.2018, 02/16/18 © National Comprehensive Cancer Network, Inc. 2018, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
NCCN Thymomas and Thymic Carcinomas Panel Members
Summary of Guidelines Updates

Initial Evaluation (THYM-1)
Initial Management (THYM-2)
Postoperative Treatment and Management (THYM-3)
Locally Advanced, Advanced, or Recurrent Disease (THYM-4)

Principles of Surgical Resection (THYM-A)
Principles of Radiation Therapy (THYM-B)
Principles of Chemotherapy for Thymic Malignancies (THYM-C)
World Health Organization Histologic Classification (THYM-D)

Staging (ST-1)

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/clinicians.aspx.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See NCCN Categories of Evidence and Consensus.
Updates in Version 2.2018 of the NCCN Guidelines for Thymomas and Thymic Carcinomas from Version 1.2018 include:

MS-1
- The Discussion section has been updated to reflect the changes in the algorithm.

Updates in Version 1.2018 of the NCCN Guidelines for Thymomas and Thymic Carcinomas from Version 1.2017 include:

THYM-1
- Initial Evaluation, Thymic tumor unlikely: added “Consider tissue biopsy” prior to “See disease-specific guidelines as appropriate”

THYM-A
- Bullet 7 is new to the page: “Surgical clips should be placed at the time of resection to areas of close margins, residual disease, or tumor adhesion to unresected normal structures to help guide accurate radiation therapy when indicated.”

THYM-B (1 of 3)
- General Principles; bullet 4 modified: “The review of preoperative imaging and co-registration of preoperative imaging into the planning system may be helpful in defining treatment volumes.”
- Radiation Doses; last bullet added: Depending on the treatment objectives in the palliative setting, typical palliative doses (e.g., 8 Gy single fraction, 20 Gy in 5 fractions, 30 Gy in 10 fractions) up to definitive doses for more durable local control and highly conformal techniques for limited volume metastases may be appropriate, given the relatively long natural history of even metastatic thymoma.

THYM-C (1 of 2)
- VIP replaced with “Etoposide/Ifosfamide/Cisplatin.”

THYM-D
- WHO Classification information has been updated.

ST-2
- AJCC Staging has been updated to reflect the changes in the AJCC Cancer Staging Manual, 8th Edition (2017).
INITIAL EVALUATION

Mediastinal mass

- Chest CT with contrast
- Serum beta-HCG, AFP, if appropriate
- CBC, platelets
- PET/CT scan as indicated
- Pulmonary function tests, as clinically indicated
- Chest MRI with contrast, as clinically indicated

Thymic tumor likely

Consider tissue biopsy

Thymic tumor unlikely

See Initial Management (THYM-2)

See disease-specific guidelines as appropriate (NCCN Table of Contents)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

aWhen assessing a mediastinal mass, detection of thymic malignancy versus thymic cyst can be better discriminated with chest MRI compared to chest CT, potentially avoiding an unnecessary thymectomy.

bWell-defined anterior mediastinal mass in the thymic bed, tumor markers negative, absence of other adenopathy, and absence of continuity with the thyroid.
Well-defined anterior mediastinal mass in the thymic bed, tumor markers negative, absence of other adenopathy, and absence of continuity with the thyroid.

Determination of resectability should be made by a board-certified thoracic surgeon, with primary focus on thoracic oncology.

See Principles of Surgical Resection (THYM-A).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
POSTOPERATIVE TREATMENT

Pathology evaluation

R0 resection

- Thymoma, no capsular invasion or thymic carcinoma, stage I

R1 resection

- Thymoma or thymic carcinoma, capsular invasion present stages II–IV

- Consider postoperative RT

R2 resection

- Thymoma

- Thymic carcinoma

- Thymoma

- Thymic carcinoma

POSTOPERATIVE MANAGEMENT

Surveillance for recurrence with chest CT with contrast every 6–12 mo for 2 y, then annually for 5 y for thymic carcinoma and 10 y for thymoma

Recurrent disease, see THYM-4

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Surgical Resection (THYM-A).

R0 = no residual tumor, R1 = microscopic residual tumor, R2 = macroscopic residual tumor.

See Principles of Radiation Therapy (THYM-B).

See Principles of Chemotherapy for Thymic Malignancies (THYM-C).

The duration for surveillance has not been established.
Thymoma or thymic carcinoma: All patients should be managed by a multidisciplinary team with experience in the management of thymoma and thymic carcinoma.

Locally advanced → Chemotherapy

Solitary metastasis or ipsilateral pleural metastasis → Chemotherapy or Surgery

Evidence of extrathoracic metastases → Chemotherapy

Resectable → Surgical resection of primary tumor and isolated metastases → Consider postoperative RT

Unresectable → RT ± chemotherapy

Consider chemotherapy or RT

Surveillance for recurrence with chest CT with contrast every 6 mo for 2 y, then annually for 5 y for thymic carcinoma and 10 y for thymoma.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SURGICAL RESECTION

• Surgical resection should be performed on carefully evaluated patients by board-certified thoracic surgeons. Locally advanced (unresectable) and resectable stage ≥ II cases should be discussed and evaluated by a multidisciplinary team.
• Surgical biopsy should be avoided if a resectable thymoma is strongly suspected based on clinical and radiologic features.
• Biopsy of a possible thymoma should avoid a transpleural approach.
• Prior to surgery, patients should be evaluated for signs and symptoms of myasthenia gravis and should be medically controlled prior to undergoing surgical resection.
• Goal of surgery is complete excision of the lesion with total thymectomy and complete resection of contiguous and noncontiguous disease.
• Complete resection may require the resection of adjacent structures, including the pericardium, phrenic nerve, pleura, lung, and even major vascular structures. Bilateral phrenic nerve resection should be avoided due to severe respiratory morbidity.
• Surgical clips should be placed at the time of resection to areas of close margins, residual disease, or tumor adhesion to unresected normal structures to help guide accurate radiation therapy when indicated.
• During thymectomy, the pleural surfaces should be examined for pleural metastases. If feasible, resection of pleural metastases to achieve complete gross resection is appropriate.
• Minimally invasive procedures are not routinely recommended due to the lack of long-term data. However, minimally invasive procedures may be considered for clinical stage I-II if all oncologic goals can be met as in standard procedures, and if performed in specialized centers by surgeons with experience in these techniques.1-6

PRINCIPLES OF RADIATION THERAPY¹,²

General Principles
• Recommendations regarding RT should be made by a board-certified radiation oncologist.
• Definitive RT should be given for patients with unresectable disease (if disease progresses on induction chemotherapy), incompletely resected invasive thymoma or thymic carcinoma, or as adjuvant therapy after chemotherapy and surgery for patients with locally advanced disease.
• Radiation oncologists need to communicate with the surgeon to review the operative findings and to help determine the target volume at risk. They also need to communicate with the pathologist regarding the detailed pathology on histology, disease extent such as extracapsular extension, and surgical margins.
• The review of preoperative imaging and co-registration of preoperative imaging into the planning system are helpful in defining treatment volumes.
• Acronyms and abbreviations for RT are the same as listed in the Principles of RT for non-small cell lung cancer. See NCCN Guidelines for Non-Small Cell Lung Cancer.

Radiation Dose
• The dose and fractionation schemes of RT depend on the indication of the radiation and the completeness of surgical resection in postoperative cases.
• A dose of 60 to 70 Gy should be given to patients with unresectable disease.
• For adjuvant treatment, the radiation dose consists of 45 to 50 Gy for clear/close margins and 54 Gy for microscopically positive resection margins. A total dose of 60–70 Gy should be given to patients with gross residual disease (similar to patients with unresectable disease),³,⁴ when conventional fractionation (1.8–2.0 Gy per daily fraction) is applied.
• Depending on the treatment objectives in the palliative setting, typical palliative doses (e.g., 8 Gy single fraction, 20 Gy in 5 fractions, 30 Gy in 10 fractions) up to definitive doses for more durable local control and highly conformal techniques for limited volume metastases may be appropriate, given the relatively long natural history of even metastatic thymoma.

See Radiation Volume and Radiation Techniques (THYM-B 2 of 3)
References on THYM-B (3 of 3)
PRINCIPLES OF RADIATION THERAPY

Radiation Volume

• The gross tumor volume should include any grossly visible tumor. Surgical clips indicative of gross residual tumor should be included for postoperative adjuvant RT.

• The clinical target volume (CTV) for postoperative RT should encompass the entire thymus (for partial resection cases), surgical clips, and any potential sites with residual disease. The CTV should be reviewed with the thoracic surgeon.

• Extensive elective nodal irradiation (entire mediastinum and bilateral supraclavicular nodal regions) is not recommended, as thymomas do not commonly metastasize to regional lymph nodes.5

• The planning target volume (PTV) should consider the target motion and daily setup error. The PTV margin should be based on the individual patient’s motion, simulation techniques used (with and without inclusion motion), and reproducibility of daily setup of each clinic.

Radiation Techniques

• CT-based planning is highly recommended. CT scans should be taken in the treatment position with arms raised above the head (treatment position). Simulations of target motion are encouraged whenever possible. CT scans can be performed at the end of natural inhale, exhale, and under free breathing when more sophisticated techniques like 4D-CT, gated CT, or active breathing control are not available. Target motion should be managed using the Principles of RT for non-small cell lung cancer. See NCCN Guidelines for Non-Small Cell Lung Cancer. Intravenous contrast is beneficial in the unresectable setting.

• Radiation beam arrangements should be selected based on the shape of PTV aiming to confine the prescribed high dose to the target and minimize dose to adjacent critical structures. Anterior-posterior and posterior-anterior ports weighing more anteriorly, or wedge pair technique may be considered. These techniques, although commonly used during the traditional 2-D era, can generate an excessive dose to normal tissue. A dose-volume histogram of the lungs, heart, and cord need to be carefully reviewed for each plan.

• RT should be given by 3-D conformal technique to reduce surrounding normal tissue damage (eg, heart, lungs, esophagus, spinal cord). Intensity-modulated RT (IMRT) may further improve the dose distribution and decrease the dose to the normal tissue as indicated. If IMRT is applied, the ASTRO/ACR IMRT guidelines should be strictly followed.6,7

• In addition to following the normal tissue constraints recommendation using the Principles of RT for non-small cell lung cancer, more conservative limits are recommended to minimize the dose volumes to all the normal structures. Since these patients are younger and mostly long-term survivors, the mean total dose to the heart should be as low as reasonably achievable to potentially maximize survival.

• Proton beam therapy (PBT) has been shown to improve the dosimetry compared to IMRT allowing better sparing of the normal organs (lungs, heart, and esophagus).8 Additionally, favorable results in terms of both local control and toxicity have been obtained with PBT.9 Based on these data, PBT may be considered in certain circumstances.

See General Principles and Radiation Dose (THYM-B 1 of 3)
References on THYM-B (3 of 3)
PRINCIPLES OF RADIATION THERAPY

REFERENCES

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
First-Line Combination Chemotherapy Regimens

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose and Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP¹ (preferred for thymoma)</td>
<td>Cisplatin 50 mg/m² IV day 1, Doxorubicin 50 mg/m² IV day 1, Cyclophosphamide 500 mg/m² IV day 1, Administered every 3 weeks</td>
</tr>
<tr>
<td>CAP with prednisone²</td>
<td>Cisplatin 30 mg/m² days 1–3, IV continuous infusion on days 1–3, Cyclophosphamide 500 mg/m² IV on day 1, Prednisone 100 mg/day days 1–5, Administered every 3 weeks</td>
</tr>
<tr>
<td>ADOC³</td>
<td>Cisplatin 50 mg/m² IV day 1, Doxorubicin 40 mg/m² IV day 1, Vincristine 0.6 mg/m² IV day 3, Cyclophosphamide 700 mg/m² IV day 4, Administered every 3 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose and Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE⁴</td>
<td>Cisplatin 60 mg/m² IV day 1, Etoposide 120 mg/m²/d IV days 1–3, Administered every 3 weeks</td>
</tr>
<tr>
<td>Etoposide/Ifosfamide/Cisplatin⁵</td>
<td>Etoposide 75 mg/m² on days 1–4, Ifosfamide 1.2 g/m² on days 1–4, Cisplatin 20 mg/m² on days 1–4, Administered every 3 weeks</td>
</tr>
<tr>
<td>Carboplatin/Paclitaxel⁶ (preferred for thymic carcinoma)</td>
<td>Carboplatin AUC 6, Paclitaxel 200 mg/m², Administered every 3 weeks</td>
</tr>
</tbody>
</table>

Second-Line Systemic Therapy

- Sunitinib (Thymic carcinomas only)⁷
- Pemetrexed⁸
- Everolimus⁹
- Paclitaxel¹⁰-¹¹
- Octreotide (including LAR) +/- prednisone¹²
- Gemcitabine¹³
- 5-FU and leucovorin¹⁴
- Etoposide⁴
- Ifosfamide¹⁵

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

References on THYM-C 2 of 2
PRINCIPLES OF CHEMOTHERAPY FOR THYMIC MALIGNANCIES

REFERENCES

<table>
<thead>
<tr>
<th>Thymoma subtype</th>
<th>Obligatory criteria</th>
<th>Optional criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Occurrence of bland, spindle shaped epithelial cells (at least focally); paucity<sup>a</sup> or absence of immature (TdT+) T cells throughout the tumor</td>
<td>Polygonal epithelial cells CD20+ epithelial cells</td>
</tr>
<tr>
<td>Atypical type A variant</td>
<td>Criteria of type A thymoma; in addition: comedo-type tumor necrosis; increased mitotic count (>4/2mm<sup>2</sup>); nuclear crowding</td>
<td>Polygonal epithelial cells CD20+ epithelial cells</td>
</tr>
<tr>
<td>Type AB</td>
<td>Occurrence of bland, spindle shaped epithelial cells (at least focally); abundance<sup>a</sup> of immature (TdT+) T cells focally or throughout tumor</td>
<td>Polygonal epithelial cells CD20+ epithelial cells</td>
</tr>
<tr>
<td>Type B1</td>
<td>Thymus-like architecture and cytology; abundance of immature T cells, areas of medullary differentiation (medullary islands); paucity of polygonal or dendritic epithelia cells without clustering (i.e.<3 contiguous epithelial cells)</td>
<td>Hassall’s corpuscles; perivascular spaces</td>
</tr>
<tr>
<td>Type B2</td>
<td>Increased numbers of single or clustered polygonal or dendritic epithelial cells intermingled with abundant immature T cells</td>
<td>Medullary islands; Hassall’s corpuscles; perivascular spaces</td>
</tr>
<tr>
<td>Type B3</td>
<td>Sheets of polygonal slightly to moderately atypical epithelial cells; absent or rare intercellular bridges; paucity or absence of intermingled TdT+ T cells</td>
<td>Hassall’s corpuscles; perivascular spaces</td>
</tr>
<tr>
<td>MNT<sup>b</sup></td>
<td>Nodules of bland spindle or oval epithelial cells surrounded by an epithelial cell-free lymphoid stroma</td>
<td>Lymphoid follicles; monoclonal B cells and/or plasma cells (rare)</td>
</tr>
<tr>
<td>Metaplastic thymoma</td>
<td>Biphasic tumor composed of solid areas of epithelial cells in a background of bland-looking spindle cells; absence of immature T cells</td>
<td>Pleomorphism of epithelial cells; actin, keratin, or EMA-positive spindle cells</td>
</tr>
<tr>
<td>Rare others<sup>c</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aPaucity versus abundance: any area of crowded immature T cells or moderate numbers of immature T cells in >10% of the investigated tumor are indicative of “abundance”.

^bMNT, micronodular thymoma with lymphoid stroma.

^cMicroscopic thymoma; sclerosing thymoma, lipofibroadenoma.

¹Reprinted from J Thorac Oncol, 10, Marx A, Chan JK, Coindre JM, et al., The 2015 World Health Organization Classification of Tumors of the Thymus: Continuity and Changes, 1383-1395, 2015, with permission from Elsevier.
Staging

Table 1. Modified Masaoka clinical staging of thymoma

<table>
<thead>
<tr>
<th>Masaoka Stage</th>
<th>Diagnostic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Macroscopically and microscopically completely encapsulated</td>
</tr>
</tbody>
</table>
| Stage II | (A) Microscopic transcapsular invasion
 (B) Macroscopic invasion into surrounding fatty tissue or grossly adherent to but not through mediastinal pleura or pericardium |
| Stage III | Macroscopic invasion into neighboring organs (i.e., pericardium, great vessels, lung)
 (A) Without invasion of great vessels
 (B) With invasion of great vessels |
| Stage IV | (A) Pleural or pericardial dissemination
 (B) Lymphogenous or hematogenous metastasis |

2. Note that the Masaoka staging system is also used to stage thymic carcinomas.
Staging

Table 2. Definitions for TNM^{a,b}

<table>
<thead>
<tr>
<th>Primary Tumor (T)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor encapsulated or extending into the mediastinal fat; may involve the mediastinal pleura</td>
</tr>
<tr>
<td>T1a</td>
<td>Tumor with no mediastinal pleura involvement</td>
</tr>
<tr>
<td>T1b</td>
<td>Tumor with direct invasion of mediastinal pleura</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor with direct invasion of the pericardium (either partial or full thickness)</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor with direct invasion into any of the following: lung, brachiocephalic vein, superior vena cava, phrenic nerve, chest wall, or extrapericardial pulmonary artery or veins</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor with invasion into any of the following: aorta (ascending, arch, or descending), arch vessels, intrapericardial pulmonary artery, myocardium, trachea, esophagus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in anterior (perithymic) lymph nodes</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis in deep intrathoracic or cervical lymph nodes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No pleural, pericardial, or distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Pleural, pericardial, or distant metastasis</td>
</tr>
<tr>
<td>M1a</td>
<td>Separate pleural or pericardial nodule(s)</td>
</tr>
<tr>
<td>M1b</td>
<td>Pulmonary intraparenchymal nodule or distant organ metastasis</td>
</tr>
</tbody>
</table>

AJCC Prognostic Groups

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IVA</td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>IVA</td>
<td>Any T</td>
<td>Any N-1</td>
<td>M1a</td>
</tr>
<tr>
<td>IVB</td>
<td>Any T</td>
<td>N2</td>
<td>M0-M1a</td>
</tr>
<tr>
<td>IVB</td>
<td>Any T</td>
<td>Any N</td>
<td>M1b</td>
</tr>
</tbody>
</table>

^aInvolvement must be microscopically confirmed in pathological staging, if possible.

^bT categories are defined by “levels” of invasion; they reflect the highest degree of invasion regardless of how many other (lower-level) structures are invaded. T1, level 1 structures: thymus, anterior mediastinal fat, mediastinal pleura; T2, level 2 structures: pericardium; T3, level 3 structures: lung, brachiocephalic vein, superior vena cava, phrenic nerve, chest wall, hilar pulmonary vessels; T4, level 4 structures: aorta (ascending, arch, or descending), arch vessels, intrapericardial pulmonary artery, myocardium, trachea, esophagus.

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

Table of Contents

Overview .. MS-2

Literature Search Criteria and Guidelines Update Methodology MS-2

Mediastinal Masses .. MS-2

Thymic Masses ... MS-3

Thymomas .. MS-5

Thymic Carcinomas .. MS-7

Summary .. MS-8

References .. MS-10
Overview

Thymic epithelial tumors originate in the thymus and include thymomas and thymic carcinomas.\(^1,2\) Thymomas are a common primary tumor in the anterior mediastinum, although they are rare (1.5 cases/million).\(^3-6\) Thymic carcinomas are very rare. Although thymomas can spread locally, they are much less invasive than thymic carcinomas.\(^4\) Patients with thymomas have 5-year survival rates of approximately 90%\(^7-9\). However, 5-year survival rates for thymic carcinomas are approximately 55%\(^10-12\).

These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) focus on thymomas and thymic carcinomas and outline the evaluation, treatment, and management of these mediastinal tumors; these NCCN Guidelines® were first published in 2007 and have been subsequently updated every year. The Summary of the Guidelines Updates section in the algorithm briefly describes the new changes for 2018, which are described in greater detail in this revised Discussion text; new references have been added. These NCCN Guidelines for Thymomas and Thymic Carcinomas were developed and are updated by panel members who are also on the NCCN Guidelines for Non-Small Cell Lung Cancer Panel. All recommendations are category 2A unless otherwise indicated. Category 2A recommendations are based on lower-level evidence (eg, phase 2 trials, case reports), and there is uniform NCCN consensus that the intervention is appropriate (ie, \(\geq 85\%\) of panel members agree).

Literature Search Criteria and Guidelines Update Methodology

An electronic search of the PubMed database was performed to obtain key literature in Thymomas and Thymic Carcinomas using the following search terms: Thymomas; Thymic Carcinomas. The PubMed database was chosen, because it is the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase 1; Clinical Trial, Phase 2; Clinical Trial, Phase 3; Clinical Trial, Phase 4; Guideline; Meta-Analysis; Randomized Controlled Trial; Systematic Reviews; and Validation Studies.

The data from key PubMed articles selected by the NCCN Panel for review during the NCCN Guidelines update meeting, as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the NCCN Panel, have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). If high-level evidence is lacking, recommendations are based on the panel's review of lower-level evidence and expert opinion. The complete details of the development and update of the NCCN Guidelines are available on the NCCN webpage (available at www.NCCN.org).

Mediastinal Masses

Masses in the anterior mediastinum can be neoplasms (eg, thymomas, lymphomas, thymic carcinomas, thymic carcinoids, thymolipomas, germ cell tumors, lung metastases) or non-neoplastic conditions (eg, intrathoracic goiter, thymic cysts, lymphangiomata, aortic aneurysms).\(^5,13-16\) Many mediastinal masses are benign, especially those occurring in asymptomatic patients; however, symptomatic patients often have malignant mediastinal lesions. All patients with a mediastinal mass should be evaluated to determine the type of mass and the extent of disease before treatment (see Initial Evaluation in the NCCN Guidelines for Thymomas and Thymic Carcinomas). It is
essential to differentiate between thymic malignancies and other conditions (eg, lung metastases, lymphoma, goiter, germ cell tumors) before treatment, because management differs for these conditions.1,17,18 Most masses in the mediastinum are metastases from a primary lung cancer (eg, non-small cell lung cancer). However, about 50% of primary cancers in the anterior mediastinum are thymomas.19

Patients with thymomas often have an indolent presentation, whereas those with lymphoma or germ cell tumors have a rapid onset of symptoms.18 Lymphomas typically manifest as generalized disease but can also be primary anterior mediastinal lesions (ie, nodular sclerosing Hodgkin’s disease, non-Hodgkin’s lymphomas [diffuse large B-cell lymphoma and acute lymphoblastic lymphoma]); patients typically have lymphadenopathy (see the NCCN Guidelines for Non-Hodgkin’s Lymphomas and Hodgkin Lymphoma, available at www.NCCN.org).16,20 Thymic carcinoids are rare tumors that are discussed in the NCCN Guidelines for Neuroendocrine Tumors; they can be associated with multiple endocrine neoplasia type 1 (MEN1) syndrome (see the NCCN Guidelines for Neuroendocrine Tumors, available at www.NCCN.org).21,22 Extragonadal germ cell tumors are rare tumors that may also occur in the mediastinum.23,24

Low-dose CT is recommended for detecting lung cancer in individuals at high risk (see the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).25 There are no data to suggest that lung cancer screening with low-dose CT improves survival for patients with thymomas and thymic carcinomas; therefore, guidelines about screening for lung cancer with low-dose CT do not apply to thymomas and thymic carcinomas.25 However, mediastinal masses (eg, lung metastases, thymomas, thymic carcinomas) may be detected in individuals undergoing chest imaging.

Recommended tests for assessing mediastinal masses include chest CT with contrast and blood chemistry studies (see Initial Evaluation in the NCCN Guidelines for Thymomas and Thymic Carcinomas).14,26-33 On CT, a thymoma is usually a well-defined round or oval mass in the thymus without lymph node enlargement.31,34,35 In patients who cannot tolerate iodinated contrast, MRI of the chest may be useful.31 Combined PET/CT may be useful for determining whether extrathoracic metastases are present.36,37 PET/CT provides better correlation with anatomic structures than PET alone. Alpha-fetoprotein (AFP) levels and beta–human chorionic gonadotropin (beta-hCG) levels may be measured to rule out germ cell tumors (see Initial Evaluation in the NCCN Guidelines for Thymomas and Thymic Carcinomas). Thymic epithelial tumors are likely if the following are present: 1) a well-defined mediastinal mass in the thymic bed that is not continuous with the thyroid gland; 2) tumor markers for AFP or beta-hCG are negative; and 3) no other adenopathy is present.1,2,38

Thymic Masses

The optimal plan of care for patients with thymic malignancies should be developed before treatment, after evaluation by radiation oncologists, thoracic surgeons, medical oncologists, and diagnostic imaging specialists.39,40 It is critical to determine whether the mass can be surgically resected; a board-certified thoracic surgeon with a primary focus on thoracic oncology should make this decision. Total thymectomy and complete surgical excision of the tumor are recommended whenever possible for most resectable tumors (see Principles of Surgical Resection in the NCCN Guidelines for Thymomas and Thymic Carcinomas).9,11,18,41,42 During thymectomy, the pleural surfaces should be examined for metastases. To achieve a complete gross resection, removal of pleural metastases may be appropriate in some patients.43-45 Core-needle or open biopsy is recommended for
locally advanced, unresectable thymic masses. The cancer protocol for thymic tumors from the College of American Pathologists (CAP) may be useful for assessing specimens. For the 2018 update, the NCCN Panel added new recommendations for the placement of surgical clips to help guide accurate radiation therapy (RT).

Minimally invasive procedures are not routinely recommended, because only a few long-term studies are available regarding recurrence and survival. However, minimally invasive procedures may be considered if recommended oncologic goals can be met (as previously described) and if performed in specialized centers with surgeons with expertise in these techniques. A systematic review of 1061 patients with thymomas reported that 5-year overall survival after video-assisted thoracoscopic surgery (VATS: 83%–100% vs. open: 79%–98%) and 10-year recurrence-free survival (VATS: 89%–100% vs. open: 80%–93%) were similar in patients undergoing VATS compared to open thymectomy, although outcomes may be skewed due to selection bias. A recent retrospective review in 2835 patients assessed VATS thymectomy compared with sternotomy in patients with thymomas. The 5-year overall survival rate was 97.9% in the VATS group. The overall survival rates were not significantly different when comparing the VATS group versus the sternotomy group (P = .74). A meta-analysis also showed that VATS was safe and patients had similar overall survival when compared with those receiving open thymectomy.

Although several staging systems exist, the Masaoka staging system has been the most widely accepted system for management and determination of prognosis for both thymomas and thymic carcinomas (see Table 1 in the NCCN Guidelines for Thymomas and Thymic Carcinomas). The WHO histologic classification system can be used to distinguish between thymomas, thymic carcinomas, and thymic carcinoids (see the NCCN Guidelines for Thymomas and Thymic Carcinomas). The WHO classification is also used to differentiate among different histologic types of thymomas (ie, A, AB, B1, B2, B3); however, it is difficult to classify thymomas. The WHO histologic classification system was revised in 2015. Thymic carcinomas are type C in the WHO classification, although they are very different from thymomas and are not advanced thymomas (see Thymic Carcinomas in this Discussion). However, the histologic subtype is less important for management than stage of disease and the extent of resection (ie, R0, R1, R2) (see Postoperative Treatment and Management in the NCCN Guidelines for Thymomas and Thymic Carcinomas). For stage III to IV thymomas, 5-year survival rates have been reported to be 90% in patients with total resection. For thymic carcinomas, 5-year survival rates are lower, even in those with total resection.
Thymomas

Thymomas typically occur in adults 40 to 70 years of age; they are rare in children or adolescents.18,81 The etiology of thymomas is unknown; alcohol, tobacco smoking, and ionizing radiation do not appear to be risk factors for thymomas.3 The incidence of thymomas is higher in African Americans as well as Asians and Pacific Islanders, which suggests there may be a genetic component.3,82 Although some patients are asymptomatic, others present with chest pain, cough, or dyspnea. Approximately 30% to 50% of patients with thymomas have myasthenia gravis.83 Symptoms suggestive of myasthenia gravis include drooping eyelids, double vision, drooling, difficulty climbing stairs, hoarseness, and/or dyspnea. Before any surgical procedure, all patients suspected of having thymomas (even those without symptoms) should have their serum antiacetylcholine receptor antibody levels measured to determine whether they have myasthenia gravis to avoid respiratory failure during surgery.70 If patients have myasthenia gravis, they should receive treatment by a neurologist with experience in myasthenia gravis before undergoing surgical resection.84-87

Although thymomas can be locally invasive (eg, pleura, lung), they uncommonly spread to regional lymph nodes or extrathoracic sites.9,70,88,89 Surgery (ie, total thymectomy and complete excision of tumor) is recommended for all resectable thymomas for patients who can tolerate the surgery.19,90,91 For resected stage I and II thymomas, the 10-year survival rate is excellent (approximately 90% and 70%, respectively).18,92 Completeness of resection is the most important predictor of outcome.7 Surgical biopsy is not necessary if a resectable thymoma is strongly suspected based on clinical and radiologic features (eg, patients have myasthenia gravis and a characteristic mass on CT).18 A transpleural approach should be avoided during biopsy of a possible thymoma to prevent tumor seeding.85,93 Small biopsy sampling (fine-needle or core-needle biopsy) does not always indicate whether invasion is present.94 The ITMIG and CAP have established procedures for reporting the surgical and pathologic findings from resection specimens.46,95

Adjuvant therapy is not recommended for completely resected (R0) stage I thymomas.41,96,97 For incompletely resected thymomas, postoperative RT is recommended (see Postoperative Treatment and Management in the NCCN Guidelines for Thymomas and Thymic Carcinomas).39,41,98,99 Note that extensive elective nodal radiation is not recommended, because thymomas do not typically metastasize to regional lymph nodes.9,100 CT-based treatment planning is highly recommended before RT (see Principles of Radiation Therapy in the NCCN Guidelines for Thymomas and Thymic Carcinomas).101 RT should be given by the 3D conformal technique to reduce damage to surrounding normal tissue (eg, heart, lungs, esophagus, spinal cord).

Use of intensity-modulated RT (IMRT) may decrease the dose to the normal tissues.101,102 If IMRT is used, guidelines from the NCI Advanced Technology Center (ATC) and ASTRO/ACR should be followed.103-107 The ICRU-83 (International Commission on Radiation Units and Measurements Report 83) recommendations are also a useful resource.106,108 Although the normal tissue constraints recommendations for lung cancer may be used (see the Principles of Radiation Therapy in the NCCN Guidelines for Non-Small Cell Lung Cancer, available at www.NCCN.org), more conservative limits are recommended to minimize the dose volumes to all the normal structures.109,110 Because these patients are younger and usually long-term survivors, the mean dose to the heart should be as low as reasonably achievable.

A definitive dose of 60 to 70 Gy is recommended for patients with unresectable disease. For adjuvant treatment, a dose of 45 to 50 Gy is
recommended for clear or close margins; a dose of 54 Gy is recommended for microscopically positive resection margins (see *Principles of Radiation Therapy* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). However, a total dose of 60 Gy or more (1.8–2 Gy/fraction per day) is recommended for patients with gross residual disease after surgery. In patients with thymomas who have capsular invasion after an R0 resection, postoperative RT can be considered (see *Postoperative Treatment and Management* in the NCCN Guidelines for Thymomas and Thymic Carcinomas).

Patients with stage III (with macroscopic invasion into neighboring organs) thymoma have higher risks of recurrent disease and, as such, postoperative radiation is recommended. Data suggest that patients with stage II thymoma may not benefit from postoperative radiation. Postoperative chemotherapy is also not beneficial in this setting.

For locally advanced thymomas, induction chemotherapy is recommended followed by an evaluation for surgery; postoperative RT can be considered after surgical resection of the primary tumor and isolated metastases (see *Postoperative Treatment and Management* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). For those with solitary metastasis or ipsilateral pleural metastases, options include induction chemotherapy or surgery. For patients with unresectable disease in both of these settings, RT with [or without] chemotherapy is recommended. It is difficult to specify RT dosing regimens for metastatic disease given the very broad range of metastatic scenarios that are possible. Stereotactic body radiation therapy (SBRT) may be appropriate for limited focal metastases, whereas conventional fractionation is appropriate for larger metastases. In the palliative setting, typical palliative doses may be used—8 Gy in a single fraction, 20 Gy in 5 fractions, or 30 Gy in 10 fractions—depending on the treatment objectives. However, RT dosing can extend up to definitive doses for more durable local control. Highly conformal techniques may be appropriate for limited volume metastases, given the relatively long natural history of even metastatic thymoma.

For metastatic disease, chemotherapy is recommended (see *Principles of Chemotherapy for Thymic Malignancies* in the NCCN Guidelines for Thymomas and Thymic Carcinomas). Although 6 different combination regimens are provided in the NCCN algorithm, cisplatin/doxorubicin-based regimens seem to yield the best outcomes; the panel feels that cisplatin/doxorubicin/cyclophosphamide is the regimen of choice for thymoma. However, non-anthracycline regimens (eg, cisplatin/etoposide [with or without ifosfamide], carboplatin/paclitaxel) may be useful for patients who cannot tolerate the more aggressive regimens. Induction therapy followed by surgery may be useful for thymic malignancies initially considered unresectable.

After primary treatment for resectable thymomas, panel members agree that surveillance for recurrence should include chest CT every 6 months for 2 years, then annually for 10 years for thymoma. Given the risk of later recurrence for thymoma, surveillance should continue for at least 10 years. However, the duration, frequency, and type of imaging for surveillance for patients with thymomas have not been established in published studies. Patients with thymoma also have an increased risk for second malignancies, although no particular screening studies are recommended.

Second-line systemic therapy for thymomas includes pemetrexed, everolimus, paclitaxel, octreotide (long-acting release [LAR]) with or without prednisone, gemcitabine, 5-fluorouracil (5-FU), etoposide, and...
ifosfamide. However, none of these agents has been assessed in randomized trials. Panel members feel that pemetrexed and paclitaxel are more efficacious as second-line therapy for thymomas than the other agents (see the NCCN Evidence Blocks for Thymomas and Thymic Carcinomas, available at www.NCCN.org). Octreotide may be useful in patients with thymoma who have a positive octreotide scan or symptoms of carcinoid syndrome. Sunitinib is not recommended in patients with thymomas, because they do not have c-Kit mutations. Surgery is an option for patients with recurrent locally advanced disease, solitary metastases, or ipsilateral metastases.

Thymic Carcinomas

Thymic carcinomas are rare aggressive tumors that often metastasize to regional lymph nodes and extrathoracic sites; thus, they have a worse prognosis than thymomas. Survival rates for thymic carcinomas vary depending on stage (stages 1–2: 91%; stages 3–4: 31%) and resectability (including completeness of resection). These tumors can be distinguished from thymomas because of their malignant histologic features and their different immunohistochemical and genetic features. They are predominantly squamous cell carcinomas and undifferentiated carcinomas. However, thymic carcinomas should be differentiated from primary lung malignancies that metastasize to the thymus and have a similar histologic appearance. Thymic carcinomas often cause pericardial and pleural effusions. The Masaoka staging system and the AJCC TNM staging system can also be used to stage thymic carcinomas (see Tables 1 and 2 in the NCCN Guidelines for Thymomas and Thymic Carcinomas).

It is important to note that thymic carcinomas are associated with a different clinical course from thymomas. Unlike thymomas, paraneoplastic syndromes, including myasthenia gravis, are very rare in patients with thymic carcinoma. If myasthenia gravis is diagnosed, then the diagnosis of thymic carcinoma should be reassessed; the patient may actually have thymoma. In contrast to thymomas (which mainly occur in adults), thymic carcinomas occur over a wide age range including adolescents when assessed in a single-institution Western population; they predominantly occur in Caucasian individuals.

Similar to thymomas, patients with completely resected thymic carcinomas have longer survival than those who are either incompletely resected or are unresectable. Patients who have an R0 resection have a 5-year survival of about 60%. Thus, management depends on the extent of resection. Patients with thymic carcinoma have higher risks of recurrent disease; therefore, postoperative radiation is recommended to maximize local control. After resection of thymic carcinomas, postoperative management includes RT with (or without) chemotherapy, depending on the completeness of resection (see Postoperative Treatment and Management in the NCCN Guidelines for Thymomas and Thymic Carcinomas). A study suggests that adjuvant therapy may not be necessary for early-stage thymic carcinomas. For unresectable or metastatic thymic carcinomas, chemotherapy with (or without) RT is recommended (see Principles of Chemotherapy for Thymic Malignancies and Principles of Radiation Therapy in the NCCN Guidelines for Thymomas and Thymic Carcinomas).

A definitive dose of 60 to 70 Gy is recommended for patients with unresectable thymic carcinomas. For adjuvant treatment, a dose of 45 to 50 Gy is recommended for clear or close margins; a dose of 54 Gy is recommended for microscopically positive resection margins (see Principles of Radiation Therapy in the NCCN Guidelines for Thymomas and Thymic Carcinomas). However, a total dose of 60 Gy or...
more (1.8–2 Gy/fraction per day) is recommended for patients with gross residual disease after surgery.112,113 In patients with thymic carcinomas who have capsular invasion after an R0 resection, postoperative RT can be considered (see \textit{Postoperative Treatment and Management} in the NCCN Guidelines for Thymomas and Thymic Carcinomas).97,101,114-116 Adjuvant therapy is not recommended for completely resected (R0) stage I thymic carcinomas.41,96,97

Unfortunately, thymic carcinomas respond poorly to chemotherapy; carboplatin/paclitaxel is recommended, because it has the highest response rate in patients with thymic carcinomas in clinical trials.137,142,165-174 Data suggest that the cisplatin/doxorubicin/vincristine/cyclophosphamide (ADOC) regimen is also effective, but it is more toxic than carboplatin/paclitaxel.172 Induction chemotherapy is recommended followed by an evaluation for surgery for locally advanced disease; postoperative RT can be considered after surgical resection of the primary tumor and isolated metastases (see \textit{Postoperative Treatment and Management} in the NCCN Guidelines for Thymomas and Thymic Carcinomas).10 Patients with unresectable disease can then receive RT with [or without] chemotherapy. For those with solitary metastasis or ipsilateral pleural metastases, options include induction chemotherapy or surgery.

After primary treatment for resectable disease, panel members agree that surveillance for recurrence should include chest CT every 6 months for 2 years, then annually for 5 years for thymic carcinoma.31 However, the duration, frequency, or type of imaging for surveillance for thymic carcinomas has not been established in published studies. Data are lacking regarding second-line chemotherapy for thymic carcinomas.127 Second-line systemic therapy for thymic malignancies includes sunitinib, pemetrexed, everolimus, paclitaxel, octreotide (LAR) with or without prednisone, gemcitabine, 5-FU, etoposide, and ifosfamide (see \textit{Principles of Chemotherapy for Thymic Malignancies} in the NCCN Guidelines for Thymomas and Thymic Carcinomas).128 However, panel members voted that these second-line agents are not very efficacious for thymic carcinomas (see the NCCN Evidence Blocks for Thymomas and Thymic Carcinomas). Targeted therapy (eg, sunitinib) may be useful for patients with \textit{c-Kit} mutations; however, these mutations are rare in thymic carcinomas (<10%).82,128,147,175-179 Patients with thymomas do not have \textit{c-Kit} mutations.153 S-1 (an oral fluorouracil) appears to be active in patients with thymic carcinomas.180,181 Pembrolizumab is active (response rate, 22.5%) as second-line therapy in patients with thymic carcinomas but is associated with a high rate of severe immune-related adverse events.182

Summary

These NCCN Guidelines® focus on thymomas and thymic carcinomas and outline the evaluation, treatment, and management of these mediastinal tumors. The \textit{Summary of the Guidelines Updates} section in the algorithm briefly describes the new changes for 2018, which are described in greater detail in this revised Discussion text; recent references have been added. Although several staging systems exist, the Masaoka staging system has been the most widely accepted system for both thymomas and thymic carcinomas (see Table 1 in the NCCN Guidelines for Thymomas and Thymic Carcinomas).9,11,56-62,9,11,56-62 A new staging system for thymomas and thymic carcinomas is based on a combined effort by the ITMIG and the IASLC; this staging was used as the basis for the new staging system for thymic malignancies from the AJCC Cancer Staging Manual (8th edition), which became effective on January 1, 2018 (see Table 2 in the NCCN Guidelines for Thymomas and Thymic Carcinomas). Clinicians may find it useful to use both the Masaoka system and the AJCC TNM staging system.
For the 2018 update, the NCCN Panel added new recommendations for the placement of surgical clips to help guide accurate RT and also briefly discussed metastatic RT dosing regimens. In the palliative setting, typical palliative doses may be used—8 Gy in a single fraction, 20 Gy in 5 fractions, or 30 Gy in 10 fractions—depending on the treatment objectives. However, RT dosing can extend up to definitive doses for more durable local control. Highly conformal techniques may be appropriate for limited volume metastases, given the relatively long natural history of even metastatic thymoma.
References

16. Strollo DC, Rosado-de-Christenson ML, Jett JR. Primary mediastinal tumors: part II. Tumors of the middle and posterior

93. Murakawa T, Nakajima J, Kohno T, et al. Results from surgical treatment for thymoma. 43 years of experience. Jpn J Thorac...
Discussion

