NCCN Guidelines Version 2.2018 Panel Members
Non-Small Cell Lung Cancer

*David S. Ettinger, MD/Chair †
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

*Douglas E. Wood, MD/Vice Chair ¶
Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

Dara L. Aisner, MD, PhD ≠
University of Colorado Cancer Center

Wallace Akerley, MD †
Huntsman Cancer Institute at the University of Utah

Jessica Bauman, MD ‡ †
Fox Chase Cancer Center

D. Ross Camidge, MD, PhD †
University of Colorado Cancer Center

Lucian R. Chirieac, MD ≠
Dana-Farber/Brigham and Women’s Cancer Center

Thomas A. D’Amico, MD ¶
Duke Cancer Institute

Malcolm M. DeCamp, MD ¶
Robert H. Lurie Comprehensive Cancer Center of Northwestern University

Thomas J. Dilling, MD, MS §
Moffitt Cancer Center

Michael Dobelbower, MD, PhD §
University of Alabama at Birmingham Comprehensive Cancer Center

Ramaswamy Govindan, MD †
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine

Matthew A. Gubens, MD, MS †
UCSF Helen Diller Family Comprehensive Cancer Center

Mark Hennon, MD ¶
Roswell Park Cancer Institute

Leora Horn, MD, MSc †
Vanderbilt-Ingram Cancer Center

Ritsuko Komaki, MD §
The University of Texas MD Anderson Cancer Center

Rudy P. Lackner, MD ¶
Fred & Pamela Buffett Cancer Center

Michael Lanuti, MD ¶
Massachusetts General Hospital Cancer Center

Ticiana A. Leal, MD †
University of Wisconsin Carbone Cancer Center

Leah J. Leisch, MD ¶
University of Alabama at Birmingham Comprehensive Cancer Center

Rogerio Lilienbaum, MD †
Yale Cancer Center/Smilow Cancer Hospital

Jules Lin, MD ¶
University of Michigan Comprehensive Cancer Center

Billy W. Loo, Jr., MD, PhD §
Stanford Cancer Institute

Renato Martins, MD, MPH †
Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance

Gregory A. Otterson, MD †
The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute

Karen Reckamp, MD, MS † ‡
City of Hope Comprehensive Cancer Center

Gregory J. Riely, MD, PhD † ¶
Memorial Sloan Kettering Cancer Center

Steven E. Schild, MD §
Mayo Clinic Cancer Center

Theresa A. Shapiro, MD, PhD ¥
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

James Stevenson, MD †
Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute

Scott J. Swanson, MD ¶
Dana-Farber/Brigham and Women’s Cancer Center

Kurt Tauer, MD †
St. Jude Children’s Research Hospital/University of Tennessee Health Science Center

Stephen C. Yang, MD ¶
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

NCCN
Kristina Gregory, RN, MSN, OCN
Miranda Hughes, PhD

† Medical oncology
¶ Surgery/Surgical oncology
≠ Radiation oncology/Radiotherapy
§ Pathology
muş Hematology/Hematology oncology
ф Diagnostic/Interventional radiology
¥ Patient advocate
þ Internal medicine
*Discussion Section Writing Committee
Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here:
nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See NCCN Categories of Evidence and Consensus.

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2017.
Updates in Version 2.2018 of the NCCN Guidelines for Non-Small Cell Lung Cancer from Version 1.2018 include:

NSCL-4 and **NSCL-6**
- Added Stage IIIA (T4, N0-1)

NSCL-17
- Testing results clarification added: *EGFR, ALK, ROS1, BRAF* negative or unknown, PD-L1<50% or unknown

NSCL-J 2 of 4 and 3 of 4
- Footnote ** added: Carboplatin-based regimens are often used for patients with comorbidities or those who cannot tolerate cisplatin.

MS-1
- The Discussion section has been updated to reflect the changes in the algorithm.

Updates in Version 1.2018 of the NCCN Guidelines for Non-Small Cell Lung Cancer from Version 9.2017 include:

DIAG-1
- The following bullets were moved from DIAG-2 and DIAG-3 to DIAG-1 and added to the algorithm.
 - Lung nodules in asymptomatic, high-risk patients detected during lung cancer screening with LDCT, see the NCCN Guidelines for Lung Cancer Screening.
 - For incidentally detected lung nodules, see below

DIAG-2
- The management of a solid nodule(s) on chest CT was modified based on the updated Fleischner criteria. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT scans: From the Fleischner Society. Radiology 2017;284:228-243.

DIAG-3
- The management of a subsolid nodule(s) on chest CT was modified based on the updated Fleischner criteria. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT scans: From the Fleischner Society. Radiology 2017;284:228-243.

DIAG-A 1 of 2
- Bullet 3; sub-bullet 1 modified: "Patients should preferably undergo invasive mediastinal staging (*mediastinoscopy*) as the initial step before the planned resection (during the same anesthetic procedure), rather than as a separate procedure. *For patients undergoing EBUS/EUS staging, this may require a separate procedure to allow evaluation if onsite rapid cytology interpretation is not available."

NSCL-1
- Stage IVA (M1b) descriptor modified: "Limited sites with resectable lung lesion and definitive therapy for thoracic disease feasible"
Updates in Version 1.2.2018 of the NCCN Guidelines for Non-Small Cell Lung Cancer from Version 9.2017 include:

NSCL-12
- Footnote bb modified as per updated AJCC Staging Manual: "While most pleural (pericardial) effusions associated with lung cancer are due to a result of the tumor, there are in a few patients, however, in whom multiple cytopathologic microscopic examinations of pleural (pericardial) fluid are negative for tumor, and fluid is non-bloody and not an exudate. When if these elements and clinical judgment dictate that the effusion is not related to the tumor, the effusion should be excluded as a staging element descriptor. Pericardial effusion is classified using the same criteria."

NSCL-15
- Footnote ee added: Timing of CT scans within Guidelines parameters is a clinical decision. (Same text added to NSCL-J 1 of 4)

NSCL-17
- Footnote hh added with link to new page: "Principles of Molecular and Biomarker Analysis (NSCL-G)" (also applies to NSCL-18 through NSCL-26)

NSCL-19
- Multiple lesions; T790M: The option for PD-L1 expression positive was removed.
- Subsequent Therapy for T790M: "First-line therapy" changed to "Initial cytotoxic therapy."
- Footnote mm was added with link to new page: "See Targeted Therapy for Advanced or Metastatic Disease (NSCL-I)." (also applies to NSCL-20 through NSCL-28)
- Footnote nn was added to osimertinib. (also applies to NSCL-22, NSCL-23, and NSCL-24)
- Footnote qq was modified: "Consider osimertinib (regardless of T790M status) or pulse erlotinib for carcinomatosis meningitis progressive leptomeningeal disease."
- Footnote tt is new to the page: "The data in the second-line setting suggest that immunotherapy is less effective, irrespective of PD-L1 expression, in tumors with an actionable mutation." (also applies to NSCL-22, NSCL-23, and NSCL-24)

NSCL-22
- Systemic, Multiple lesions: The option for PD-L1 expression positive was removed.
- Progression on crizotinib after treatment for Asymptomatic; Symptomatic Brain; Symptomatic, Systemic, Isolated lesion: The option for PD-L1 expression positive was removed.
- Subsequent Therapy: "First-line therapy" changed to "Initial cytotoxic therapy."
- Footnote nn was added to ceritinib, alectinib, and brigatinib.
- Footnote uu was added: "Beware of flare phenomenon in a subset of patients who discontinue ALK inhibitor. If disease flare occurs, restart ALK inhibitor."
- Footnote yy is new to the page: "If considering WBRT, switch ALK inhibitor before using WBRT."

NSCL-23
- New page to address progression on alectinib or ceritinib.

NSCL-24
- First-line therapy: Ceritinib added as a treatment option.
- First-line therapy: Crizotinib listed as a preferred treatment option.
- Progression: The option for PD-L1 expression positive removed.
- Subsequent Therapy: First-line therapy changed to Initial cytotoxic therapy.
- Footnote nn added to crizotinib and ceritinib.
Updates in Version 1.2018 of the NCCN Guidelines for Non-Small Cell Lung Cancer from Version 9.2017 include:

NSCL-25
- Footnote removed: Although it may be reasonable to treat *BRAF* V600E-positive tumors with first-line pembrolizumab if PD-L1 ≥50%, there are no data of its efficacy in this subgroup of patients. The data in the second-line setting suggest that immunotherapy is less effective, irrespective of PD-L1 expression, in tumors with an actionable mutation.

NSCL-27
- Switch maintenance with pemetrexed changed from a category 2B to a category 2A recommendation.

NSCL-25 through NSCL-28
- "First-line therapy" changed to "Initial cytotoxic therapy."

NSCL-A
- The Principles of Pathologic Review section was extensively revised.

NSCL-C 1 of 10
- General Principles; bullet 4, sentence 4 modified: In a prospective trial of definitive chemo/RT for stage III NSCLC (RTOG 0617), IMRT was associated with a nearly 60% decrease (from 7.9% to 3.5%) in high-grade radiation pneumonitis and similar survival and tumor control outcomes despite a higher proportion of stage IIIB and larger treatment volumes compared to 3D-CRT; as such, IMRT is preferred over 3D-CRT in this setting.

NSCL-C 2 of 10
- Locally Advanced/NSCLC (Stage II-III); Bullet 1 modified: "The standard of care Concurrent chemotherapy/RT is recommended for patients with inoperable stage II (node positive) and stage III NSCLC is concurrent chemotherapy/RT followed by consolidation durvalumab for stage III."
- Advanced/Metastatic NSCLC (Stage IV); bullet 2, last sentence added: "A randomized phase II trial of local consolidative therapy (RT or surgery) to oligometastatic lesions vs. maintenance systemic therapy or observation for patients not progressing on systemic therapy found significantly improved progression-free survival for local consolidative therapy."

NSCL-C 3 of 10
- Target Volumes, Prescription Doses, and Normal Tissue Dose Constraints; bullet 4, last sentence added: "Because risk of normal organ toxicity increases with dose, doses to normal organs should be kept as low as reasonably achievable rather than simply meeting nominal constraints. This is generally facilitated by more advanced techniques to achieve better dose conformity."

NSCL-C 4 of 10
- Locally Advanced Stage/Conventionally Fractionated RT; bullet 1, last sentence added: "IFI is reasonable in order to optimize definitive dosing to the tumor and/or decrease normal tissue toxicity."
- Advanced Stage/Palliative RT; last sentence modified: "When higher doses (>30 Gy) are warranted, technologies to reduce normal tissue irradiation (at least 3D-CRT and including IMRT or proton therapy as appropriate) may be used."

NSCL-C 8 of 10
- Table 5; Heart mean dose changed from ≤35 to ≤26 Gy.

NSCL-C 9 of 10
- References 21 and 42 were added.
Updates in Version 1.2018 of the NCCN Guidelines for Non-Small Cell Lung Cancer from Version 9.2017 include:

NSCL-D
- Chemotherapy Regimens for Patients with Comorbidities or Patients Not Able to Tolerate Cisplatin; the following regimens were added:
 - Carboplatin AUC 5 day 1, gemcitabine 1000 mg/m² days 1, 8, every 21 days for 4 cycles
 - Carboplatin AUC 5 day 1, pemetrexed 500 mg/m² day 1 for nonsquamous every 21 days for 4 cycles
- References added:

NSCL-E
- The following were removed: Sequential Chemotherapy/RT Regimens (Adjuvant)
 - Cisplatin 100 mg/m² on days 1 and 29; vinblastine 5 mg/m²/weekly on days 1, 8, 15, 22, and 29; followed by RT
 - Paclitaxel 200 mg/m² over 3 hours on day 1; carboplatin AUC 6 over 60 minutes on day 1 every 3 weeks for 2 cycles followed by thoracic RT
- Regimens to be used in sequential chemotherapy/RT are now linked to NSCL-D.

NSCL-F
- Cancer Surveillance - specific recommendations replaced with link to NSCL-15.

NSCL-G
- This is a new section to address Principles of Molecular and Biomarker Analysis. Some content previously located in the Principles of Pathologic Review section was revised and relocated to this section.

NSCL-H
- HER2 mutations
 - Ado-trastuzumab emtansine was added with reference 9
 - Trastuzumab and afatinib were removed
 - References 7–9 were updated

NSCL-I
- This is a new section added providing references for Targeted Therapy for Advanced or Metastatic Disease.
 - ST-1 and ST-2
- Staging was updated to reflect the changes in the AJCC Cancer Staging Manual, Eighth Edition (2016).
 - ST-3
LUNG CANCER PREVENTION AND SCREENING

- Lung cancer is a unique disease in that the major etiologic agent is an addictive product that is made and promoted by an industry. Approximately 85% to 90% of cases are caused by voluntary or involuntary (second-hand) cigarette smoking. Reduction of lung cancer mortality will require effective public health policies to prevent initiation of smoking, U.S. Food and Drug Administration (FDA) oversight of tobacco products, and other tobacco control measures.
- Persistent smoking is associated with second primary cancers, treatment complications, drug interactions, other tobacco-related medical conditions, diminished quality of life, and reduced survival.
- Reports from the Surgeon General on both active smoking (http://www.cdc.gov/tobacco/data_statistics/sgr/2004/pdfs/executivesummary.pdf) and second-hand smoke show that both cause lung cancer. The evidence shows a 20% to 30% increase in the risk for lung cancer from second-hand smoke exposure associated with living with a smoker (http://www.ncbi.nlm.nih.gov/books/NBK44324/).
 Every person should be informed of the health consequences, addictive nature, and mortal threat posed by tobacco consumption and exposure to tobacco smoke, and effective legislative, executive, administrative, or other measures should be contemplated at the appropriate governmental level to protect all persons from exposure to tobacco smoke (www.who.int/tobacco/framework/final_text/en/).
- Further complicating this problem, the delivery system of lung carcinogens also contains the highly addictive substance, nicotine. Reduction of lung cancer mortality will require widespread implementation of Agency for Healthcare Research and Quality (AHRQ) Guidelines (http://www.ahrq.gov/professionals/clinicians-providers/guidelines-recommendations/tobacco/index.html) to identify, counsel, and treat patients with nicotine habituation.
- Patients who are current or former smokers have significant risk for the development of lung cancer; chemoprevention agents are not yet established for these patients. When possible, these patients should be encouraged to enroll in chemoprevention trials.
- Lung cancer screening using low-dose CT (LDCT) is recommended in select high-risk smokers and former smokers (see the NCCN Guidelines for Lung Cancer Screening).
- See the NCCN Guidelines for Smoking Cessation.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Clinical Presentation

- Incidental finding of nodule suspicious for lung cancer
 - Multidisciplinary evaluation
 - Smoking cessation counseling

- Lung nodules in asymptomatic, high-risk patients detected during lung cancer screening with LDCT

Risk Assessment

Patient factors
- Age
- Smoking history
- Previous cancer history
- Family history
- Occupational exposures
- Other lung disease (chronic obstructive pulmonary disease [COPD], pulmonary fibrosis)
- Exposure to infectious agents (e.g., endemic areas of fungal infections, tuberculosis) or risk factors or history suggestive of infection (e.g., immune suppression, aspiration, infectious respiratory symptoms)

Radiologic factors
- Size, shape, and density of the pulmonary nodule
- Associated parenchymal abnormalities (e.g., scarring or suspicion of inflammatory changes)
- Fluorodeoxyglucose (FDG) avidity on PET imaging

Solid nodules
- See Follow-up (DIAG-2)

Subsolid nodules
- See Follow-up (DIAG-3)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 2.2018, 12/19/17 © National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
FINDINGS

Low risk\(^e\)

- 6–8 mm → CT at 6–12 mo → Stable → Consider CT at 18–24 mo
- >8 mm → Consider CT at 3 mo, PET/CT,\(^i,j\) or biopsy

High risk\(^f\)

- 6–8 mm → CT at 6–12 mo → Stable → Repeat CT at 18–24 mo
- >8 mm → Consider CT at 3 mo, PET/CT,\(^i,j\) or biopsy

Incidental finding: solid nodule(s) on chest CT

\(^c\)See Principles of Diagnostic Evaluation (DIAG-A 1 of 2).

\(^d\)The most important radiologic factor is change or stability compared with a previous imaging study.

\(^e\)Low risk = minimal or absent history of smoking or other known risk factors.

\(^f\)High risk = history of smoking or other known risk factors. Known risk factors include history of lung cancer in a first-degree relative; exposure to asbestos, radon, or uranium.

\(^g\)Non-solid, partially solid, or ground-glass nodules may require longer follow-up to exclude indolent adenocarcinoma.

\(^h\)Adapted from Fleischner Society Guidelines: MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology 2017;284:228-243. ©Radiological Society of North America. Fleischner Society Guidelines do not direct whether or not contrast is necessary or if an LDCT is appropriate. LDCT is preferred unless there is a reason for contrast enhancement for better diagnostic resolution.

\(^i\)PET/CT performed skull base to knees or whole body. A positive PET result is defined as a standardized uptake value (SUV) in the lung nodule greater than the baseline mediastinal blood pool. A positive PET scan finding can be caused by infection or inflammation, including absence of lung cancer with localized infection, presence of lung cancer with associated (eg, postobstructive) infection, and presence of lung cancer with related inflammation (eg, nodal, parenchymal, pleural). A false-negative PET scan can be caused by a small nodule, low cellular density (non-solid nodule or ground-glass opacity [GGO]), or low tumor avidity for FDG (eg, adenocarcinoma in situ [previously known as bronchoalveolar carcinoma], carcinoid tumor).

\(^j\)Patients with a suspicion of lung cancer after PET/CT require histologic confirmation before any nonsurgical therapy. When a biopsy is not possible, a multidisciplinary evaluation should be done including radiation oncology, surgery, and interventional pulmonology.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
FINDINGS

INCIDENTAL FINDINGS:

SOLO NODULES

- Solitary pure ground-glass nodules
 - <6 mm: No routine follow-up
 - ≥6 mm: CT at 6–12 mo to confirm persistence, then CT every 2 y until 5 y

- Solitary part-solid nodules
 - Persistent and solid component:
 - <6 mm: No routine follow-up
 - ≥6 mm:
 - CT at 3–6 mo to confirm persistence
 - If unchanged and solid component remains <6 mm, annual CT for 5 y

- Multiple subsolid nodules
 - <6 mm:
 - CT at 3–6 mo
 - If stable, consider CT at 2 and 4 y
 - ≥6 mm:
 - CT at 3–6 mo
 - Subsequent management based on most suspicious nodule(s)

DIAG-3

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

\(^{c,d,g,h}\) See Principles of Diagnostic Evaluation (DIAG-A 1 of 2).

\(^{d}\) The most important radiologic factor is change or stability compared with a previous imaging study.

\(^{g}\) Non-solid, partially solid, or ground-glass nodules may require longer follow-up to exclude indolent adenocarcinoma.

\(^{h}\) Adapted from Fleischner Society Guidelines: MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology 2017;284:228-243. ©Radiological Society of North America. Fleischner Society Guidelines do not direct whether or not contrast is necessary or if an LDCT is appropriate. LDCT is preferred unless there is a reason for contrast enhancement for better diagnostic resolution.

Version 2.2018, 12/19/17 © National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
PRINCIPLES OF DIAGNOSTIC EVALUATION

• Patients with a strong clinical suspicion of stage I or II lung cancer (based on risk factors and radiologic appearance) do not require a biopsy before surgery.
 - A biopsy adds time, costs, and procedural risk and may not be needed for treatment decisions.
 - A preoperative biopsy may be appropriate if a non-lung cancer diagnosis is strongly suspected that can be diagnosed by core biopsy or fine-needle aspiration (FNA).
 - A preoperative biopsy may be appropriate if an intraoperative diagnosis appears difficult or very risky.
 - If a preoperative tissue diagnosis has not been obtained, then an intraoperative diagnosis (ie, wedge resection, needle biopsy) is necessary before lobectomy, bilobectomy, or pneumonectomy.

• Bronchoscopy should preferably be performed during the planned surgical resection, rather than as a separate procedure.
 - Bronchoscopy is required before surgical resection (see NSCL-2).
 - A separate bronchoscopy may not be needed for treatment decisions before the time of surgery and adds time, costs, and procedural risk.
 - A preoperative bronchoscopy may be appropriate if a central tumor requires pre-resection evaluation for biopsy, surgical planning (eg, potential sleeve resection), or preoperative airway preparation (eg, coring out an obstructive lesion).

• Invasive mediastinal staging is recommended before surgical resection for most patients with clinical stage I or II lung cancer (see NSCL-2).
 - Patients should preferably undergo invasive mediastinal staging (mediastinoscopy) as the initial step before the planned resection (during the same anesthetic procedure), rather than as a separate procedure. For patients undergoing endobronchial ultrasound (EBUS)/endoscopic ultrasound (EUS) staging, this may require a separate procedure to allow evaluation if onsite rapid cytology interpretation is not available.
 - A separate staging procedure adds time, costs, coordination of care, inconvenience, and an additional anesthetic risk.
 - Preoperative invasive mediastinal staging may be appropriate for a strong clinical suspicion of N2 or N3 nodal disease or when intraoperative cytology or frozen section analysis is not available.

• In patients with suspected non-small cell lung cancer (NSCLC), many techniques are available for tissue diagnosis.
 - Diagnostic tools that should be routinely available include:
 ◊ Sputum cytology
 ◊ Bronchoscopy with biopsy and transbronchial needle aspiration (TBNA)
 ◊ Image-guided transthoracic needle core biopsy (preferred) or FNA
 ◊ Thoracentesis
 ◊ Mediastinoscopy
 ◊ Video-assisted thoracic surgery (VATS) and open surgical biopsy
 - Diagnostic tools that provide important additional strategies for biopsy include:
 ◊ EBUS–guided biopsy
 ◊ EUS–guided biopsy
 ◊ Navigational bronchoscopy

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF DIAGNOSTIC EVALUATION

The preferred diagnostic strategy for an individual patient depends on the size and location of the tumor, the presence of mediastinal or distant disease, patient characteristics (such as pulmonary pathology and/or other significant comorbidities), and local experience and expertise.

Factors to be considered in choosing the optimal diagnostic step include:

◊ Anticipated diagnostic yield (sensitivity)
◊ Diagnostic accuracy including specificity and particularly the reliability of a negative diagnostic study (ie, true negative)
◊ Adequate volume of tissue specimen for diagnosis and molecular testing
◊ Invasiveness and risk of procedure
◊ Efficiency of evaluation
 – Access and timeliness of procedure
 – Concomitant staging is beneficial, because it avoids additional biopsies or procedures. It is preferable to biopsy the pathology that would confer the highest stage (ie, to biopsy a suspected metastasis or mediastinal lymph node rather than the pulmonary lesion).
 Therefore, PET imaging is frequently best performed before a diagnostic biopsy site is chosen in cases of high clinical suspicion for aggressive, advanced-stage tumors.
◊ Technologies and expertise available
◊ Tumor viability at proposed biopsy site from PET imaging.

Decisions about the optimal diagnostic steps for suspected stage I to III lung cancer should be made by thoracic radiologists, interventional radiologists, and board-certified thoracic surgeons who devote a significant portion of their practice to thoracic oncology. Multidisciplinary evaluation should also include a pulmonologist or thoracic surgeon with expertise in advanced bronchoscopic techniques for diagnosis.

The least invasive biopsy with the highest yield is preferred as the first diagnostic study.

◊ Patients with central masses and suspected endobronchial involvement should undergo bronchoscopy.
◊ Patients with peripheral (outer one-third) nodules may benefit from navigational bronchoscopy, radial EBUS, or transthoracic needle aspiration (TTNA).
◊ Patients with suspected nodal disease should be biopsied by EBUS, EUS, navigational bronchoscopy, or mediastinoscopy.
 – EBUS provides access to nodal stations 2R/2L, 4R/4L, 7, 10R/10L, and other hilar nodal stations if necessary.
 – EUS–guided biopsy provides additional access to stations 5, 7, 8, and 9 lymph nodes if these are clinically suspicious.
 – TTNA and anterior mediastinotomy (ie, Chamberlain procedure) provide additional access to anterior mediastinal (station 5 and 6) lymph nodes if these are clinically suspicious.
◊ EUS also provides reliable access to the left adrenal gland.
◊ Lung cancer patients with an associated pleural effusion should undergo thoracentesis and cytology. A negative cytology result on initial thoracentesis does not exclude pleural involvement. An additional thoracentesis and/or thoracoscopic evaluation of the pleura should be considered before starting curative intent therapy.
◊ Patients suspected of having a solitary site of metastatic disease should have tissue confirmation of that site if feasible.
◊ Patients suspected of having metastatic disease should have confirmation from one of the metastatic sites if feasible.
◊ Patients who may have multiple sites of metastatic disease—based on a strong clinical suspicion—should have biopsy of the primary lung lesion or mediastinal lymph nodes if it is technically difficult or very risky to biopsy a metastatic site.
PATHOLOGIC DIAGNOSIS OF NSCLC

- Pathology review
- H&P (include performance status + weight loss)
- CT chest and upper abdomen with contrast, including adrenals
- CBC, platelets
- Chemistry profile
- Smoking cessation advice, counseling, and pharmacotherapy
 - Use the 5 A's Framework: Ask, Advise, Assess, Assist, Arrange
 - http://www.ahrq.gov/clinic/tobacco/5steps.htm
- Integrate palliative care (See NCCN Guidelines for Palliative Care)

INITIAL EVALUATION CLINICAL STAGE

Stage IA, peripheral
- (T1abc, N0)

Stage IB, peripheral
- (T2a, N0)

Stage I, central
- (T1abc-T2a, N0)

Stage II (T1abc-T2ab, N1; T2b, N0)
- Stage IIB (T3, N0)
- Stage IIIA (T3, N1)

Stage IIIf (T3 invasion, N0)
- Stage IIIIf (T4 extension, N0-1; T3, N1; T4, N0-1)

Stage IIIIf (T1-2, N2); Stage IIIB (T3, N2)

Separate pulmonary nodule(s) (Stage IIIB, IIIA, IV)

Multiple lung cancers

Stage IIIf (T1-2, N3); Stage IIIC (T3, N3)

Stage IIIf (T4, N2); Stage IIIC (T4, N3)

Stage IVA (M1a) (pleural or pericardial effusion)

Stage IVA (M1b)

Limited sites and definitive therapy for thoracic disease feasible

Stage IVB (M1c) disseminated metastases

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

*aSee Principles of Pathologic Review (NSCL-A).
bEnhanced frailty or geriatric assessments may predict complications better following treatment modalities, particularly surgery. A preferred frailty assessment system has not been established.
dBased on the CT of the chest: Peripheral = outer third of lung; Central = inner two thirds of lung.
eT3, N0 related to size or satellite nodules.
fFor patients considered to have stage IIB and stage III tumors, where more than one treatment modality (surgery, radiation therapy, or chemotherapy) is usually considered, a multidisciplinary evaluation should be performed.
CLINICAL ASSESSMENT

PRETREATMENT EVALUATION

<table>
<thead>
<tr>
<th>Stage IA (peripheral T1abc, N0)</th>
<th>PFTs (if not previously done)</th>
<th>Bronchoscopy (intraoperative preferred)</th>
<th>Consider pathologic mediastinal lymph node evaluation</th>
<th>FDG PET/CT scan (if not previously done)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IB (peripheral T2a, N0)</td>
<td>PFTs (if not previously done)</td>
<td>Bronchoscopy</td>
<td>Pathologic mediastinal lymph node evaluation</td>
<td>FDG PET/CT scan (if not previously done)</td>
</tr>
<tr>
<td>Stage I (central T1abc–T2a, N0)</td>
<td>Brain MRI with contrast (Stage II, IIIA) (Stage IB [optional])</td>
<td>Negative mediastinal nodes</td>
<td>Operable</td>
<td>Medically inoperable</td>
</tr>
<tr>
<td>Stage II (T1abc–2ab, N1; T2b, N0)</td>
<td>Stage IIB (T3, N0)</td>
<td>Negative mediastinal nodes</td>
<td>Operable</td>
<td>Medically inoperable</td>
</tr>
<tr>
<td>Stage IIIA (T3, N1)</td>
<td>Stage IIIB (T3, N1)</td>
<td>Positive mediastinal nodes</td>
<td>Definitive RT including stereotactic ablative radiotherapy (SABR)</td>
<td></td>
</tr>
</tbody>
</table>

INITIAL TREATMENT

- Surgical exploration and resection + mediastinal lymph node dissection or systematic lymph node sampling
- Definitive RT including stereotactic ablative radiotherapy (SABR)

Adjuvant Treatment

- See Adjuvant Treatment (NSCL-3)
- See Stage IIIA/IIIB (NSCL-7) or Stage IIIB/IIIC (NSCL-11)

- Surgical exploration and resection + mediastinal lymph node dissection or systematic lymph node sampling
- Consider adjuvant chemotherapy (category 2B) for high-risk stages IB-IIB
- Definitive RT including SABR
- Definitive chemoradiation
- Durvalumab

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
FINDINGS AT SURGERY

Stage IA (T1abc, N0)
- Margins negative (R0)\(^f\)
 - Observe
- Margins positive (R1, R2)\(^f\)
 - Reresection (preferred)± chemotherapy\(^o\)
 - or
 - RT\(^l\) (category 2B)

Stage IB (T2a, N0); Stage IIA (T2b, N0)
- Margins negative (R0)\(^f\)
 - Observe
- Margins positive (R1, R2)\(^f\)
 - Reresection (preferred)± chemotherapy\(^o\)
 - or
 - RT\(^l\) ± chemotherapy\(^o\) (chemotherapy for stage IIA)

Stage IIB (T1abc-T2a, N1)
- Margins negative (R0)\(^f\)
 - Chemotherapy\(^o\) (category 1)
 - or
 - Reresection + chemotherapy\(^o\)
 - or
 - Chemoradiation\(^l\) (sequential\(^o\) or concurrent\(^q\))
 - or
 - Concurrent chemoradiation\(^l,q\)
- Margins positive
 - R1\(^f\)
 - R2\(^f\)

Stage IIIA (T1-2, N2; T3, N1)
- Margins negative (R0)\(^f\)
 - Chemotherapy\(^o\) (category 1)
 - or
 - Sequential chemotherapy\(^o\) + RT\(^l\) (N2 only)
- Margins positive
 - R1\(^f\)
 - R2\(^f\)

Stage IIIB (T3, N2)
- Chemoradiation\(^l\) (sequential\(^o\) or concurrent\(^q\))

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

\(^f\)See Principles of Radiation Therapy (NSCL-C).
\(^o\)See Chemotherapy Regimens for Neoadjuvant and Adjuvant Therapy (NSCL-D).
\(^p\)Examples of high-risk factors may include poorly differentiated tumors (including lung neuroendocrine tumors [excluding well-differentiated neuroendocrine tumors]), vascular invasion, wedge resection, tumors >4 cm, visceral pleural involvement, and unknown lymph node status (Nx). These factors independently may not be an indication and may be considered when determining treatment with adjuvant chemotherapy.

\(^q\)See Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).

\(^R0 = no residual tumor, R1 = microscopic residual tumor, R2 = macroscopic residual tumor.
\(^s\)Increasing size is an important variable when evaluating the need for adjuvant chemotherapy.
Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Methods for evaluation include mediastinoscopy, mediastinotomy, EBUS, EUS, and CT-guided biopsy.

PET/CT performed skull base to knees or whole body. Positive PET/CT scan findings for distant disease need pathologic or other radiologic confirmation. If PET/CT scan is positive in the mediastinum, lymph node status needs pathologic confirmation.
CLINICAL PRESENTATION

<table>
<thead>
<tr>
<th>Superior sulcus tumor (T3 invasion, N0-1)</th>
<th>Superior sulcus tumor (T4 extension, N0-1)</th>
</tr>
</thead>
</table>

INITIAL TREATMENT

<table>
<thead>
<tr>
<th>Superior sulcus tumor (T3 invasion, N0-1)</th>
<th>Superior sulcus tumor (T4 extension, N0-1)</th>
</tr>
</thead>
</table>

ADJUVANT TREATMENT

<table>
<thead>
<tr>
<th>Superior sulcus tumor (T3 invasion, N0-1)</th>
<th>Superior sulcus tumor (T4 extension, N0-1)</th>
</tr>
</thead>
</table>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
CLINICAL PRESENTATION

<table>
<thead>
<tr>
<th>Clinical Presentation</th>
<th>Initial Treatment</th>
<th>Adjuvant Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest wall, proximal airway, or mediastinum (T3 invasion, N0-1)</td>
<td>Surgery<sup>k</sup> (preferred) or Concurrent chemoradiation<sup>l,q</sup> or Chemotherapy<sup>o</sup></td>
<td></td>
</tr>
<tr>
<td>Stage IIIA (T4, N0-1)</td>
<td>Surgery<sup>k</sup> (preferred) or Concurrent chemoradiation<sup>l,q</sup> or Chemotherapy<sup>o</sup></td>
<td>Observe</td>
</tr>
<tr>
<td>Stage IIIA (T4, N0-1) Unresectable</td>
<td>Definitive concurrent chemoradiation<sup>l,q,t,u</sup> (category 1)</td>
<td>Durvalumab<sup>q</sup></td>
</tr>
</tbody>
</table>

^kSee Principles of Surgical Therapy (NSCL-B).
^lSee Principles of Radiation Therapy (NSCL-C).
^oSee Chemotherapy Regimens for Neoadjuvant and Adjuvant Therapy (NSCL-D).
^qSee Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).
^rR0 = no residual tumor, R1 = microscopic residual tumor, R2 = macroscopic residual tumor.

^tRT should continue to definitive dose without interruption if patient is not a surgical candidate.
^uIf full-dose chemotherapy is not given concurrently with RT as initial treatment, give additional 2 cycles of full-dose chemotherapy.
^vConsider RT boost if chemoradiation is given as initial treatment.

Note:
All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Clinical Assessment

<table>
<thead>
<tr>
<th>Stage IIIA (T1-2, N2)</th>
<th>Stage IIIB (T3, N2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretreatment Evaluation</td>
<td>Meditastinal Biopsy Findings and Resectability</td>
</tr>
<tr>
<td>Separated pulmonary nodule(s), Stage IIA, IIIA, IV</td>
<td>N2, N3 nodes negative</td>
</tr>
<tr>
<td></td>
<td>N2 nodes positive, M0</td>
</tr>
<tr>
<td></td>
<td>N3 nodes positive, M0</td>
</tr>
<tr>
<td></td>
<td>Metastatic disease</td>
</tr>
<tr>
<td>Separated pulmonary nodule(s), Stage IIIB, IIIA, IV</td>
<td>See Treatment T1-3, N0-1 (NSCL-8)</td>
</tr>
<tr>
<td></td>
<td>See Treatment (NSCL-8)</td>
</tr>
<tr>
<td></td>
<td>See Stage IIIB (NSCL-11)</td>
</tr>
<tr>
<td></td>
<td>See Treatment for Metastasis limited sites (NSCL-13) or distant disease (NSCL-16)</td>
</tr>
</tbody>
</table>

Discussion

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Methods for evaluation include mediastinoscopy, mediastinotomy, EBUS, EUS, and CT-guided biopsy.

PET/CT performed skull base to knees or whole body. Positive PET/CT scan findings for distant disease need pathologic or other radiologic confirmation. If PET/CT scan is positive in the mediastinum, lymph node status needs pathologic confirmation.
NCCN Guidelines Version 2.2018
Non-Small Cell Lung Cancer

MEDIASTINAL BIOPSY FINDINGS

<table>
<thead>
<tr>
<th>T1-3, N0-1 (including T3 with multiple nodules in same lobe)</th>
<th>INITIAL TREATMENT</th>
<th>ADJUVANT TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resectable<sup>k,n</sup></td>
<td>Surgical resection<sup>k</sup> + mediastinal lymph node dissection or systematic lymph node sampling</td>
<td>See Adjuvant Treatment (NSCL-3)</td>
</tr>
<tr>
<td>Medically inoperable</td>
<td>See Treatment according to clinical stage (NSCL-2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T1-2, T3 (other than invasive), N2 nodes positive, M0</th>
<th>Definitive concurrent chemoradiation<sup>l,q</sup> (category 1)</th>
<th>Durvalumab<sup>q</sup></th>
<th>Surveillance (NSCL-15)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Definitive concurrent chemoradiation<sup>o,w</sup> ± RT<sup>l</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No apparent progression</td>
<td>Surgery<sup>k</sup> ± chemotherapy<sup>o</sup> (category 2B) ± RT<sup>l</sup> (if not given)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Induction chemotherapy<sup:o,w</sup> ± RT<sup>l</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Progression</td>
<td>Local RT<sup>l</sup> (if not given) ± chemotherapy<sup>o</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systemic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T3 (invasion), N2 nodes positive, M0</th>
<th>Definitive concurrent chemoradiation<sup>l,q</sup></th>
<th>Durvalumab<sup>q</sup></th>
<th>Surveillance (NSCL-15)</th>
</tr>
</thead>
</table>

^kSee Principles of Surgical Therapy (NSCL-B).
^lSee Principles of Radiation Therapy (NSCL-C).
^oAfter surgical evaluation, patients likely to receive adjuvant chemotherapy may be treated with induction chemotherapy as an alternative.
^qSee Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).
^wChest CT with contrast and/or PET/CT to evaluate progression.

Note:
All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
CLINICAL PRESENTATION

Separate pulmonary nodule(s), same lobe (T3, N0-1), or ipsilateral non-primary lobe (T4, N0-1) → Surgery

N0-1

Margins negative (R0)

N2

Margins positive

R1

R2

ADJUVANT TREATMENT

Chemotherapy\(^o\)

Chemotherapy\(^o\) (category 1) or Sequential chemotherapy\(^o\) + RT\(^l\)

Chemoradiation\(^l\) (sequential\(^o\) or concurrent\(^q\))

Concurrent chemoradiation\(^l,q\)

Stage IVA (N0, M1a): Contralateral lung (solitary nodule) → Treat as two primary lung tumors if both curable → See Evaluation (NSCL-1)

Suspected multiple lung cancers (based on the presence of biopsy-proven synchronous lesions or history of lung cancer)\(^x,y\) →

• Chest CT with contrast
• FDG PET/CT scan (if not previously done)\(^j\)
• Brain MRI with contrast

Disease outside of chest → See Systemic Therapy for Metastatic Disease (NSCL-17)

No disease outside of chest →

Pathologic mediastinal lymph node evaluation\(^h\) →

N0-1 → See Initial Treatment (NSCL-10)

N2-3 → See Systemic Therapy for Metastatic Disease (NSCL-17)

Notes:
- All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

\(^h\)Methods for evaluation include mediastinoscopy, mediastinotomy, EBUS, EUS, and CT-guided biopsy.

\(^j\)PET/CT performed skull base to knees or whole body. Positive PET/CT scan findings for distant disease need pathologic or other radiologic confirmation. If PET/CT scan is positive in the mediastinum, lymph node status needs pathologic confirmation.

\(^k\)See Principles of Surgical Therapy (NSCL-B).

\(^l\)See Principles of Radiation Therapy (NSCL-C).

\(^o\)See Chemotherapy Regimens for Neoadjuvant and Adjuvant Therapy (NSCL-D).

\(^q\)See Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).

\(^\)R0 = no residual tumor, R1 = microscopic residual tumor, R2 = macroscopic residual tumor.

\(^x\)Lesions with different cell types (eg, squamous cell carcinoma, adenocarcinoma) may be different primary tumors. This analysis may be limited by small biopsy samples. However, lesions of the same cell type are not necessarily metastases.

\(^y\)For guidance regarding the evaluation, workup, and management of subsolid pulmonary nodules, please see the diagnostic evaluation of a nodule suspicious for lung cancer (DIAG-1).

\(^\)See Evaluation (NSCL-1).

\(^\)See Systemic Therapy for Metastatic Disease (NSCL-17).
CLINICAL PRESENTATION

Multiple lung cancers (N0-1)

- **Asymptomatic**
 - **Multiple lesions**
 - **Solitary lesion (metachronous disease)**
 - Low risk of becoming symptomatic
 - Observation
 - High risk of becoming symptomatic
 - Definitive local therapy possible
 - Parenchymal sparing resection (preferred)\(^k\),\(^aa\)
 - Radiation\(^l\)
 - Ablation
 - Palliative chemotherapy ± local palliative therapy or Observe
 - Palliative therapy
 - **Definitive local therapy not possible**

- **Symptomatic**
 - **Multiple lesions**
 - **Observation**
 - **Surveillance (NSCL-15)**

\(^k\)See Principles of Surgical Therapy (NSCL-B).
\(^l\)See Principles of Radiation Therapy (NSCL-C).
\(^aa\)Lesions at low risk of becoming symptomatic can be observed (eg, small subsolid nodules with slow growth). However, if the lesion(s) becomes symptomatic or becomes high risk for producing symptoms (eg, subsolid nodules with accelerating growth or increasing solid component or increasing FDG uptake, even while small), treatment should be considered.
\(^aa\)Lung-sparing resection is preferred, but tumor distribution and institutional expertise should guide individual treatment planning. Patients should be evaluated in a multidisciplinary setting (ie, surgery, radiation oncology, medical oncology).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2018
Non-Small Cell Lung Cancer

CLINICAL ASSESSMENT

<table>
<thead>
<tr>
<th>STAGE IIIB (T1-2, N3)</th>
<th>STAGE IIIC (T3, N3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETREATMENT EVALUATION</td>
<td>INITIAL TREATMENT</td>
</tr>
<tr>
<td>• PFTs (if not previously done)</td>
<td>N3 negative → See Initial treatment for stage I–IIIA (NSCL-8)</td>
</tr>
<tr>
<td>• FDG PET/CT scan(^1) (if not previously done)</td>
<td>N3 positive → Definitive concurrent chemoradiation(^{1,\text{q,u}}) (category 1) → Durvalumab(^\text{q}) → Surveillance (NSCL-15)</td>
</tr>
<tr>
<td>• Brain MRI with contrast</td>
<td>Metastatic disease → See Treatment for Metastasis limited sites (NSCL-13) or distant disease (NSCL-16)</td>
</tr>
<tr>
<td>• Pathologic confirmation of N3 disease by:</td>
<td></td>
</tr>
<tr>
<td>‣ Mediastinoscopy</td>
<td></td>
</tr>
<tr>
<td>‣ Supraclavicular lymph node biopsy</td>
<td></td>
</tr>
<tr>
<td>‣ Thoracoscopy</td>
<td></td>
</tr>
<tr>
<td>‣ Needle biopsy</td>
<td></td>
</tr>
<tr>
<td>‣ Mediastinotomy</td>
<td></td>
</tr>
<tr>
<td>‣ EUS biopsy</td>
<td></td>
</tr>
<tr>
<td>‣ EBUS biopsy</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)PET/CT performed skull base to knees or whole body. Positive PET/CT scan findings for distant disease need pathologic or other radiologic confirmation. If PET/CT scan positive in the mediastinum, lymph node status needs pathologic confirmation.

\(^{1}\)See Principles of Radiation Therapy (NSCL-C).

\(^{\text{q}}\)See Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).

\(^{\text{u}}\)If full-dose chemotherapy is not given concurrently with RT as initial treatment, give additional 2 cycles of full-dose chemotherapy.

Note:
All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
CLINICAL ASSESSMENT

PRETREATMENT EVALUATION

INITIAL TREATMENT

Stage IIIB (T4, N2)
- FDG PET/CT scan (if not previously done)
- Brain MRI with contrast
- Pathologic confirmation of N2–3 disease by either:
 - Mediastinoscopy
 - Supraclavicular lymph node biopsy
 - Thoracoscopy
 - Needle biopsy
 - Mediastinotomy
 - EUS biopsy
 - EBUS biopsy

Stage IIIC (T4, N3)
- FDG PET/CT scan (if not previously done)
- Brain MRI with contrast
- Pathologic confirmation of N2–3 disease by either:
 - Mediastinoscopy
 - Supraclavicular lymph node biopsy
 - Thoracoscopy
 - Needle biopsy
 - Mediastinotomy
 - EUS biopsy
 - EBUS biopsy

Stage IVA, M1a: pleural or pericardial effusion
- Thoracentesis or pericardiocentesis ± thoracoscopy if thoracentesis indeterminate
 - Negative
 - See Treatment according to TNM stage (NSCL-8)
 - Positive
 - Local therapy if necessary (e.g., pleurodesis, ambulatory small catheter drainage, pericardial window) + treatment for stage IV disease solitary site or distant disease (NSCL-17)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

i PET/CT performed skull base to knees or whole body. Positive PET/CT scan findings for distant disease need pathologic or other radiologic confirmation. If PET/CT scan is positive in the mediastinum, lymph node status needs pathologic confirmation.

ii If full-dose chemotherapy is not given concurrently with RT as initial treatment, give additional 2 cycles of full-dose chemotherapy.

bb Most pleural (pericardial) effusions with lung cancer are a result of the tumor. In a few patients, however, multiple microscopic examinations of pleural (pericardial) fluid are negative for tumor, and fluid is non-bloody and not an exudate. If these elements and clinical judgment dictate that the effusion is not related to the tumor, the effusion should be excluded as a staging descriptor.
CLINICAL ASSESSMENT

PRETREATMENT EVALUATION

Stage IVA, M1b: limited sites

- If not previously done
 - Brain MRI with contrast
 - FDG PET/CT scan
 - Pathologic confirmation of metastatic lesion, if possible

PS 0-1

- Limited metastases confirmed

PS 2-4

- Multiple metastases

INITIAL TREATMENT

- **Brain**
 - Stereotactic radiosurgery (SRS) alone or
 - Surgical resection, if symptomatic or warranted for diagnosis, followed by SRS or whole brain RT (WBRT)

- **Other site**
 - **See Treatment of Thoracic Disease (NSCL-14)**

See Systemic Therapy for Metastatic Disease (NSCL-17)

See Systemic Therapy for Metastatic Disease (NSCL-17)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

1PET/CT performed skull base to knees or whole body. Positive PET/CT scan findings for distant disease need pathologic or other radiologic confirmation.

ccSee NCCN Guidelines for Central Nervous System Cancers.
TREATMENT OF THORACIC DISEASE

Definitive therapy for thoracic disease feasible

- **T1-3, N0**
 - Consider systemic therapy (NSCL-17) and restaging to confirm non-progression or proceed to definitive therapy
 - • Pathologic mediastinal nodal evaluation\(^h\) and surgical resection\(^k\) or SABR\(^l\)

Definitive therapy for thoracic disease not feasible

- **T1-3, N1**
 - • Pathologic mediastinal nodal evaluation\(^h\) and surgical resection\(^k\) or definitive RT\(^l\) or chemoradiation

- **T1-3, N2 T4, N0-2**
 - Definitive chemoradiation\(^q\)

- **T4, N0-2**
 - Definitive local therapy for metastatic site,\(^{dd}\) if not already given

Consider systemic therapy, if not already given (NSCL-17)

\(^h\) Methods for evaluation include mediastinoscopy, mediastinotomy, EBUS, EUS, and CT-guided biopsy.

\(^k\) See Principles of Surgical Therapy (NSCL-B).

\(^l\) See Principles of Radiation Therapy (NSCL-C).

\(^q\) See Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).

\(^{dd}\) Typically, RT (including SABR) or surgical resection.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SURVEILLANCE AFTER COMPLETION OF DEFINITIVE THERAPY

No evidence of clinical/radiographic disease
- Stage I–II (primary treatment included surgery ± chemotherapy)
 - H&P and chest CT ± contrast every 6 mo for 2–3 y, then H&P and a low-dose non-contrast-enhanced chest CT annually
- Stage I–II (primary treatment included RT) or Stage III or Stage IV (oligometastatic with all sites treated with definitive intent)
 - H&P and chest CTee ± contrast every 3–6 mo for 3 y, then H&P and chest CT ± contrast every 6 mo for 2 y, then H&P and a low-dose non-contrast-enhanced chest CT annually
 - Residual or new radiographic abnormalities may require more frequent imaging
- Smoking cessation advice, counseling, and pharmacotherapy
- PET/CTff or brain MRI is not routinely indicated
- See Cancer Survivorship Care (NSCL-F)

ee Timing of CT scans within Guidelines parameters is a clinical decision.
ff FDG PET/CT is currently not warranted in the routine surveillance and follow-up of patients with NSCLC. However, many benign conditions (such as atelectasis, consolidation, and radiation fibrosis) are difficult to differentiate from neoplasm on standard CT imaging, and FDG PET/CT can be used to differentiate true malignancy in these settings. However, if FDG PET/CT is to be used as a problem-solving tool in patients after radiation therapy, histopathologic confirmation of recurrent disease is needed because areas previously treated with radiation therapy can remain FDG avid for up to 2 years.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
THERAPY FOR RECURRENCE AND METASTASIS

Locoregional recurrence
- Endobronchial obstruction
 - Any combination of the following:
 - Laser/stent/other surgery
 - External-beam RT or brachytherapy
 - Photodynamic therapy
 - Reresction (preferred)
 - External-beam RT or SABR

Mediastinal lymph node recurrence
- No prior RT
 - Concurrent chemoradiation
 - **Systemic therapy (NSCL-17)**

Superior vena cava (SVC) obstruction
- Prior RT
 - Concurrent chemoradiation
 - External-beam RT or SABR
 - Photodynamic therapy
 - Reresection (preferred)
 - External-beam RT or SABR

Severe hemoptysis
- **No evidence of disseminated disease**
 - Observation or Systemic therapy (NSCL-17) (category 2B)

Localized symptoms
- Palliative external-beam RT
- **Systemic Therapy for Metastatic Disease (NSCL-17)**

Diffuse brain metastases
- Palliative external-beam RT
 - If risk of fracture, orthopedic stabilization + palliative external-beam RT
 - Consider bisphosphonate therapy or denosumab

Bone metastasis
- See pathway for Stage IV, M1b, limited sites (NSCL-13)

Limited metastasis
- Disseminated metastases
- See Systemic Therapy for Metastatic Disease (NSCL-17)

Distant metastases
- See Systemic Therapy for Metastatic Disease (NSCL-17)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Surgical Therapy (NSCL-B).
See Principles of Radiation Therapy (NSCL-C).
Interventional radiology ablation is an option for selected patients.

See Chemotherapy Regimens Used with Radiation Therapy (NSCL-E).
See NCCN Guidelines for Central Nervous System Cancers.
CLINICAL PRESENTATION

Metastatic Disease

- Establish histologic subtype with adequate tissue for molecular testing (consider rebiopsy if appropriate)
- Smoking cessation counseling
- Integrate palliative care (See NCCN Guidelines for Palliative Care)

HISTOLOGIC SUBTYPE

- Adenocarcinoma
- Large cell
- NSCLC not otherwise specified (NOS)

Squamous cell carcinoma

TESTING

- Molecular testing
 - EGFR mutation testing (category 1)
 - ALK testing (category 1)
 - ROS1 testing
 - BRAF testing
 - Testing should be conducted as part of broad molecular profiling
 - PD-L1 testing

TESTING RESULTS

Sensitizing EGFR mutation positive (see NSCL-18)
- ALK positive (see NSCL-21)
- ROS1 positive (see NSCL-24)
- BRAF V600E positive (see NSCL-25)
- PD-L1 positive and EGFR, ALK, ROS1, BRAF negative or unknown (see NSCL-26)
- EGFR, ALK, ROS1, BRAF negative or unknown, PD-L1 <50% or unknown (see NSCL-27)

Sensitizing EGFR mutation positive (see NSCL-18)
- ALK positive (see NSCL-21)
- ROS1 positive (see NSCL-24)
- BRAF V600E positive (see NSCL-25)
- PD-L1 positive and EGFR, ALK, ROS1, BRAF negative or unknown (see NSCL-26)
- EGFR, ALK, ROS1, BRAF, negative or unknown, PD-L1 <50% or unknown (see NSCL-28)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SENSITIZING EGFR MUTATION POSITIVE

FIRST-LINE THERAPY

- **EGFR mutation discovered prior to first-line chemotherapy**
 - Erlotinib (category 1)
 - Afatinib (category 1)
 - Gefitinib (category 1)
 - Osimertinib

- **EGFR mutation discovered during first-line chemotherapy**
 - Complete planned chemotherapy, including maintenance therapy, or interrupt, followed by erlotinib or afatinib or gefitinib or osimertinib

Progression

- See Subsequent Therapy (NSCL-19)
- See Subsequent Therapy (NSCL-20)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SENSITIZING EGFR MUTATION POSITIVE

Progression on erlotinib, afatinib, gefitinib

T790M testing

Brain

Asymptomatic

Symptomatic

Isolated lesion

Systemic

Multiple lesions

SUBSEQUENT THERAPY

• Consider local therapy
 • Osimertinib (if T790M+)

Progression

See Subsequent Therapy (NSCL-20)

• Continue erlotinib or afatinib or gefitinib

Progression

See Subsequent Therapy (NSCL-20)

• Consider local therapy
 • Osimertinib (if T790M+)

Progression

See Subsequent Therapy (NSCL-20)

• Continue erlotinib or afatinib or gefitinib

Progression

See Subsequent Therapy (NSCL-20)

• See NCCN Guidelines for CNS Cancers

See Initial cytotoxic therapy options

Adenocarcinoma (NSCL-27)

Squamous cell carcinoma (NSCL-28)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SENSITIZING EGFR MUTATION POSITIVE

SUBSEQUENT THERAPY

Progression on osimertinib

Asymptomatic

Consider local therapy
Continue osimertinib

Brain

Consider local therapy
Continue osimertinib
See NCCN Guidelines for CNS Cancers

Symptomatic

Consider local therapy
Continue osimertinib

Isolated lesion

See subsequent therapy for multiple lesions, noted below

Systemic

Multiple lesions

See Initial cytotoxic therapy options
Adenocarcinoma (NSCL-27)
Squamous cell carcinoma (NSCL-28)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Molecular and Biomarker Analysis (NSCL-G).
See Targeted Therapy for Advanced or Metastatic Disease (NSCL-I).
Beware of flare phenomenon in subset of patients who discontinue EGFR TKI. If disease flare occurs, restart EGFR TKI.
Afatinib + cetuximab may be considered in patients with disease progression on EGFR TKI therapy.
The data in the second-line setting suggest that immunotherapy is less effective, irrespective of PD-L1 expression, in tumors with an actionable mutation.
ALK REARRANGEMENT POSITIVE

FIRST-LINE THERAPY

- **ALK rearrangement discovered prior to first-line chemotherapy**
 - Alectinib\(^{\text{nn}}\) (category 1) preferred or Crizotinib\(^{\text{nn}}\) (category 1) or Ceritinib\(^{\text{nn}}\) (category 1)
 - Progression
 - See Subsequent Therapy (NSCL-23)

- **ALK rearrangement discovered during first-line chemotherapy**
 - Complete planned chemotherapy, including maintenance therapy, or interrupt, followed by alectinib or ceritinib or crizotinib
 - Progression
 - See Subsequent Therapy (NSCL-23)

\(^{\text{hh}}\)See Principles of Molecular and Biomarker Analysis (NSCL-G).

\(^{\text{mm}}\)See Targeted Therapy for Advanced or Metastatic Disease (NSCL-I).

\(^{\text{nn}}\)For performance status 0-4.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
ALK REARRANGEMENT POSITIVE

SUBSEQUENT THERAPY

Progression on crizotinib

Asymptomatic

• Consider local therapy
• Continue crizotinib or
• Ceritinib or alectinib or brigatinib

Symptomatic

Brain

• Consider local therapy
• Continue crizotinib or
• Ceritinib or alectinib or brigatinib

Isolated lesion

• Consider local therapy
• Continue crizotinib or
• Ceritinib or alectinib or brigatinib

Multiple lesions

Systemic

• Consider local therapy
• Continue crizotinib or
• Ceritinib or alectinib or brigatinib

Progression

See Initial cytotoxic therapy options

Adenocarcinoma (NSCL-27) or Squamous cell carcinoma (NSCL-28)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
ALK REARRANGEMENT POSITIVE

Progression on alectinib or ceritinib

Asymptomatic

• Consider local therapy
• Continue alectinib or ceritinib

Brain

• Consider local therapy
• Continue alectinib or ceritinib
• See NCCN Guidelines for CNS Cancers

Symptomatic

Isolated lesion

• Consider local therapy
• Continue alectinib or ceritinib

Multiple lesions

See Initial cytotoxic therapy options

For rapid radiologic progression or threatened organ function, alternate therapy should be instituted.

The data in the second-line setting suggest that immunotherapy is less effective, irrespective of PD-L1 expression, in tumors with an actionable mutation.

Beware of flare phenomenon in subset of patients who discontinue ALK inhibitor. If disease flare occurs, restart ALK inhibitor.

If considering WBRT, consider switching ALK inhibitor before using WBRT.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Molecular and Biomarker Analysis (NSCL-G).
See Targeted Therapy for Advanced or Metastatic Disease (NSCL-I).
ROS1 rearrangement positive

FIRST-LINE THERAPY

- Crizotinib (preferred)
- Ceritinib

SUBSEQUENT THERAPY

See Initial cytotoxic therapy options

Adenocarcinoma (NSCL-27)
Squamous cell carcinoma (NSCL-28)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
BRAF V600E MUTATION POSITIVE

FIRST-LINE THERAPY

- Dabrafenib + trametinib

SUBSEQUENT THERAPY

- See Initial cytotoxic therapy options
 - Adenocarcinoma (NSCL-27)
 - Squamous cell carcinoma (NSCL-28)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Molecular and Biomarker Analysis (NSCL-G).

See Targeted Therapy for Advanced or Metastatic Disease (NSCL-I).

At this point, there are no published data on the progression-free survival (PFS) of patients treated in the first-line setting.

Single-agent vemurafenib or dabrafenib are treatment options if the combination of dabrafenib + trametinib is not tolerated.
PD-L1 EXPRESSION POSITIVE\(^{hh}\)

FIRST-LINE THERAPY\(^{mm}\)

| PD-L1 expression positive (≥50%) and EGFR, ALK, ROS1, BRAF negative or unknown | Pembrolizumab (category1) | Progression | See Initial cytotoxic therapy options for Adenocarcinoma (NSCL-27) or Squamous cell carcinoma (NSCL-28) |

SUBSEQUENT THERAPY\(^{mm}\)

\(^{hh}\) See Principles of Molecular and Biomarker Analysis (NSCL-G).

\(^{mm}\) See Targeted Therapy for Advanced or Metastatic Disease (NSCL-I).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
ADENOCARCINOMA, LARGE CELL, NSCLC NOS

INITIAL CYTOTOXIC THERAPY

- **Systemic therapy**
 - **PS 0-2**
 - **Tumor response evaluation**
 - **Response** or stable disease
 - **4–6 cycles (total)**
 - **PS 3-4**
 - See NCCN Guidelines for Palliative Care

- **Best supportive care**
 - See NCCN Guidelines for Palliative Care

SUBSEQUENT THERAPY

- **Systemic immune checkpoint inhibitors (preferred)**
 - Nivolumab (category 1) or pembrolizumab (category 1) or atezolizumab (category 1)
 - Other systemic therapy
 - Docetaxel or pemetrexed or gemcitabine or ramucirumab + docetaxel

- **Best supportive care**
 - See NCCN Guidelines for Palliative Care

PS 0-2

- Progression
 - See Subsequent therapy, above
 - **Continuation maintenance**
 - Bevacizumab (category 1)
 - Pemetrexed (category 1)
 - Bevacizumab + pemetrexed
 - Gemcitabine (category 2B)
 - Switch maintenance
 - Pemetrexed
 - Close observation

PS 3-4

- Best supportive care
 - See NCCN Guidelines for Palliative Care

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SQUAMOUS CELL CARCINOMA

INITIAL CYTOTOXIC THERAPY

SUBSEQUENT THERAPY

Systemic immune checkpoint inhibitors (preferred)
- Nivolumab (category 1) or pembrolizumab (category 1) or atezolizumab (category 1)
- Other systemic therapy

Continuation maintenance

- Gemcitabine
- Switch maintenance

Response or stable disease

- 4–6 cycles (total)

Tumor response evaluation

- Progression

PS 0-2

- Systemic therapy

PS 3-4

- Best supportive care

PS 0-2

- Best supportive care

PS 3-4

- Best supportive care

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF PATHOLOGIC REVIEW (1 of 4)

• Pathologic Evaluation

 ▶ The purpose of the pathologic evaluation of NSCLC will vary depending on whether the sample 1) is a biopsy or cytology specimen intended for initial diagnosis in a case of suspected NSCLC; 2) is a resection specimen; or 3) is obtained for molecular evaluation in the setting of an established NSCLC diagnosis.

 ◊ In small biopsies or cytology specimens intended for initial diagnosis, the primary purpose is a) to make an accurate diagnosis using the 2015 WHO classification; and b) to preserve the tissue for molecular studies, especially if the patient has advanced-stage disease.

 ◊ In small biopsies of poorly differentiated carcinomas, the terms "non-small cell carcinoma (NSCC)" or "non-small cell carcinoma not otherwise specified (NSCC-NOS)" should be used as little as possible and only when a more specific diagnosis is not possible by morphology and/or special staining.

 ◊ The following terms are acceptable: "NSCC favor adenocarcinoma" and "NSCC favor squamous cell carcinoma." "NSCC-NOS" should be reserved only for cases in which immunohistochemical testing is uninformative or ambiguous (see section on immunohistochemistry).

 ◊ Preservation of material for molecular testing is critical. Efforts should be undertaken to minimize block reorientation and the number of immunohistochemistry stains for cases that cannot be classified on histologic examination alone (see section on immunohistochemistry).

 ▶ In resection specimens, the primary purpose is a) to classify the histologic type; and b) to determine all staging parameters, as recommended by the American Joint Committee on Cancer (AJCC), including tumor size, extent of invasion, adequacy of surgical margins, and presence or absence of lymph node metastases.

 ◊ The number of involved lymph node stations should be documented since it has prognostic significance (AJCC 8th ed). Direct extension of the primary tumor into an adjacent lymph node is considered as nodal involvement.

 ◊ The AJCC, Union for International Cancer Control (UICC), and International Association for the Study of Lung Cancer (IASLC) recommend that at least six nodes are removed during surgical resection, three from N1 and three from N2 stations (ie, a representative node from each station) for accurate staging. All lobectomy specimens should be extensively dissected to search for involved lymph nodes.

 ▶ In small biopsies or cytology specimens—obtained for molecular testing in the context of an established diagnosis after progression on targeted therapies, the primary purpose is a) to confirm the original pathologic type with minimal use of tissue for immunohistochemistry only in suspected small cell carcinoma transformation or a different histology; and b) to preserve material for molecular analysis.

• Formalin-fixed paraffin-embedded (FFPE) material is suitable for most molecular analyses, except bone biopsies that were previously treated with acid decalcifying solutions. Non-acid decalcifying approaches may be successful for subsequent molecular testing. Many molecular pathology laboratories also accept cytopathology specimens such as direct smears or touch preparations.

1Non–small cell carcinomas (NSCC, without the L for lung) that show no clear adenocarcinoma or squamous cell carcinoma morphology or immunohistochemical markers are regarded as NSCC not otherwise specified (NOS). In this setting, it is recommended that pathologists use the term NSCC rather than NSCLC, because the lack of pneumocyte marker expression in small biopsies or cytology leaves open the possibility of a metastatic carcinoma and the determination of a lung primary must be established clinically after excluding other primary sites.
NSCLC Classification

• The types of NSCLC are: adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, large cell carcinoma, and sarcomatoid carcinoma.

 Squamous cell carcinoma: A malignant epithelial tumor that either shows keratinization and/or intercellular bridges, or a morphologically undifferentiated NSCC that expresses immunohistochemical markers of squamous cell differentiation.

 Adenocarcinoma:
 ◊ For small (<3 cm), resected lesions, determining extent of invasion is critical.
 – Adenocarcinoma in situ (AIS; formerly BAC): A small (≤3 cm) localized nodule with lepidic growth, mostly non-mucinous, although mucinous types can occur. Multiple synchronous AIS tumors can also occur.
 – Minimally invasive adenocarcinoma (MIA): A small (≤3 cm) solitary adenocarcinoma with a predominantly lepidic pattern and ≤5 mm invasion in greatest dimension. MIA is usually non-mucinous, but rarely may be mucinous. MIA is, by definition, solitary and discrete.
 – Invasive adenocarcinoma: A malignant epithelial tumor with glandular differentiation, mucin production, or pneumocyte marker expression. The tumors show an acinar, papillary, micropapillary, lepidic, or solid growth pattern, with either mucin or pneumocyte marker expression. After comprehensive histologic subtyping in 5%–10% increments, the tumors are classified according to their predominant pattern. The invasive adenocarcinoma component should be present in at least one focus measuring >5 mm in greatest dimension.
 – Invasive adenocarcinoma variants: invasive mucinous adenocarcinoma, colloid adenocarcinoma, fetal adenocarcinoma, and enteric adenocarcinoma.

 Adenosquamous carcinoma: A carcinoma showing components of both squamous cell carcinoma and adenocarcinoma, with each component constituting at least 10% of the tumor. Definitive diagnosis requires a resection specimen, although it may be suggested based on findings in small biopsies, cytology, or excisional biopsies. Presence of any adenocarcinoma component in a biopsy specimen that is otherwise squamous should trigger molecular testing.

 Large cell carcinoma: Undifferentiated NSCC that lacks the cytologic, architectural, and histochemical features of small cell carcinoma, adenocarcinoma, or squamous cell carcinoma. The diagnosis requires a thoroughly sampled resected tumor and cannot be made on non-resection or cytology specimens.

 Sarcomatoid carcinoma is a general term that includes pleomorphic carcinoma, carcinosarcoma, and pulmonary blastoma. For this reason, it is best to use the specific term for these entities whenever possible rather than the general term.

 ◊ Pleomorphic carcinoma is a poorly differentiated NSCC that contains at least 10% spindle and/or giant cells or a carcinoma consisting only of spindle and giant cells. Spindle cell carcinoma consists of an almost pure population of epithelial spindle cells, while Giant cell carcinoma consists almost entirely of tumor giant cells.

 ◊ Carcinosarcoma is a malignant tumor that consists of a mixture of NSCC and sarcoma-containing heterologous elements (e.g., rhabdomyosarcoma, chondrosarcoma, osteosarcoma).

 ◊ Pulmonary blastoma is a biphasic tumor that consists of fetal adenocarcinoma (typically low grade) and primitive mesenchymal stroma.
PRINCIPLES OF PATHOLOGIC REVIEW (3 of 4)

Immunohistochemistry

- Judicious use of immunohistochemistry is strongly recommended to preserve tissue for molecular testing, most notably in small specimens. When adenocarcinoma or squamous cell carcinomas are poorly differentiated, the defining morphologic criteria that would allow for specific diagnosis may be inconspicuous or absent. In this case, immunohistochemistry or mucin staining may be necessary to determine a specific diagnosis.

- In small specimens, a limited number of immunostains with one lung adenocarcinoma marker (TTF1, napsin A) and one squamous carcinoma marker (p40, p63) should suffice for most diagnostic problems. Virtually all tumors that lack squamous cell morphology and show co-expression of p63 and TTF1 are preferably classified as adenocarcinoma. A simple panel of TTF1 and p40 may be sufficient to classify most NSCC-NOS cases.

- Testing for NUT expression by immunohistochemistry should be considered in all poorly differentiated carcinomas that lack glandular differentiation or specific etiology, particularly in non-smokers or in patients presenting at a young age, for consideration of a pulmonary NUT carcinoma.

- Immunohistochemistry should be used to differentiate primary lung adenocarcinoma from squamous cell carcinoma, large cell carcinoma, metastatic carcinoma, and primary pleural mesothelioma (particularly for pleural specimens).

- Primary pulmonary adenocarcinoma:
 - In patients for whom the primary origin of the carcinoma is uncertain, an appropriate panel of immunohistochemical stains is recommended to assess for metastatic carcinoma to the lung.
 - TTF1 is a homeodomain-containing nuclear transcription protein of the Nkx2 gene family that is expressed in epithelial cells of the embryonal and mature lung and thyroid. TTF1 immunoreactivity is seen in primary pulmonary adenocarcinoma in the majority (70%–90%) of non-mucinous adenocarcinoma subtypes. Metastatic adenocarcinoma to the lung is nearly always negative for TTF1 except in metastatic thyroid malignancies, in which case thyroglobulin and PAX8 are also positive. Rare cases of TTF1 positivity in tumors of other organs (gynecologic tract, pancreatobiliary) have been noted, and may be dependent on the specific TTF1 clone utilized, stressing the importance of correlation with clinical and radiologic features.
 - Napsin A - an aspartic proteinase expressed in normal type II pneumocytes and in proximal and distal renal tubules - appears to be expressed in >80% of lung adenocarcinomas and may be a useful adjunct to TTF1.
 - The panel of TTF1 (or alternatively napsin A) and p40 (or alternatively p63) may be useful in refining the diagnosis to either adenocarcinoma or squamous cell carcinoma in small biopsy specimens previously classified as NSCC NOS.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF PATHOLOGIC REVIEW (4 of 4)

Immunohistochemistry

• Immunohistochemistry should be used to confirm neuroendocrine differentiation when there is morphologic evidence of neuroendocrine morphology (e.g., speckled chromatin pattern, nuclear molding, peripheral palisading):
 - NCAM (CD56), chromogranin, and synaptophysin are used to identify neuroendocrine tumors in cases in which morphologic suspicion of neuroendocrine differentiation exists.
 - A panel of markers is useful, but one positive marker is enough if the staining is unambiguous in more than 10% of the tumor cells.

• Malignant mesothelioma versus pulmonary adenocarcinoma
 - The distinction between pulmonary adenocarcinoma and malignant mesothelioma (epithelioid type) can be made by correlation of the histology with the clinical impression, imaging studies, and a panel of immunomarkers.
 - Immunostains sensitive and specific for mesothelioma include WT-1, calretinin, CK5/6, and D2-40 (usually negative in adenocarcinoma).
 - Immunostains sensitive and specific for adenocarcinoma include pCEA, Claudin 4, TTF1, and napsin A (negative in mesothelioma). Other potentially useful markers that can be considered include B72.3, Ber-EP4, MOC31, and CD15, but these generally do not have the sensitivity and specificity of the above markers.
 - A pancytokeratin such as AE1/AE3 is also useful, as a negative result suggests the possibility of other tumors.
 - Other markers can be helpful in the differential diagnosis between mesothelioma and metastatic carcinoma, and will also help determine the tumor origin. Examples include markers for lung adenocarcinoma (TTF1, napsin A), breast carcinoma (ERα, PR, GCDFP15, mammaglobin), renal cell carcinoma (PAX8), papillary serous carcinoma (PAX8, PAX2, and ER), adenocarcinomas of the gastrointestinal tract (CDX2), and prostate cancer (NKX3.1). Additionally, p40 (or p63) is helpful for distinguishing epithelioid mesotheliomas with pseudosquamous morphology from squamous cell carcinomas.
PRINCIPLES OF SURGICAL THERAPY (1 of 4)

Evaluation
- Determination of resectability, surgical staging, and *pulmonary resection should be performed by board-certified thoracic surgeons who perform lung cancer surgery as a prominent part of their practice*.
- CT and PET used for staging should be within 60 days before proceeding with surgical evaluation.
- Resection is the preferred local treatment modality (other modalities include radiofrequency ablation, cryotherapy, and SABR). Thoracic surgical oncology consultation should be part of the evaluation of any patient being considered for curative local therapy. In cases where SABR is considered for high-risk patients, a multidisciplinary evaluation (including a radiation oncologist) is recommended.
- The overall plan of treatment as well as needed imaging studies should be determined before any non-emergency treatment is initiated.
- Thoracic surgeons should actively participate in multidisciplinary discussions and meetings regarding lung cancer patients (e.g., multidisciplinary clinic and/or tumor board).
- Patients who are active smokers should be provided counseling and smoking cessation support (*NCCN Guidelines for Smoking Cessation*). While active smokers have a mildly increased incidence of postoperative pulmonary complications, these should not be considered a prohibitive risk for surgery. Surgeons should not deny surgery to patients solely due to smoking status, as surgery provides the predominant opportunity for prolonged survival in patients with early-stage lung cancer.

Resection
- Anatomic pulmonary resection is preferred for the majority of patients with NSCLC.
- Sublobar resection - Segmentectomy and wedge resection should achieve parenchymal resection margins ≥2 cm or ≥ the size of the nodule.
- Sublobar resection should also sample appropriate N1 and N2 lymph node stations unless not technically feasible without substantially increasing the surgical risk.
- Segmentectomy (preferred) or wedge resection is appropriate in selected patients for the following reasons:
 - Poor pulmonary reserve or other major comorbidity that contraindicates lobectomy
 - Peripheral nodule ≤2 cm with at least one of the following:
 - Pure AIS histology
 - Nodule has ≥50% ground-glass appearance on CT
 - Radiologic surveillance confirms a long doubling time (≥400 days)
- VATS or minimally invasive surgery (including robotic-assisted approaches) should be strongly considered for patients with no anatomic or surgical contraindications, as long as there is no compromise of standard oncologic and dissection principles of thoracic surgery.
- In high-volume centers with significant VATS experience, VATS lobectomy in selected patients results in improved early outcomes (i.e., decreased pain, reduced hospital length of stay, more rapid return to function, fewer complications) without compromise of cancer outcomes.
- Lung-sparing anatomic resection (sleeve lobectomy) is preferred over pneumonectomy, if anatomically appropriate and margin-negative resection is achieved.
- T3 (invasion) and T4 local extension tumors require en-bloc resection of the involved structure with negative margins. If a surgeon or center is uncertain about potential complete resection, consider obtaining an additional surgical opinion from a high-volume specialized center.

Margins and Nodal Assessment (see NSCL-B 2 of 4)

1Peripheral is defined as the outer one third of the lung parenchyma.
Margins and Nodal Assessment

- Surgical pathologic correlation is critical to assess apparent close or positive margins, as these may not represent true margins or may not truly represent areas of risk for local recurrence (e.g., medial surface of mainstem or bronchus intermedius when separate subcarinal lymph node dissection has been performed; pleural margin adjacent to aorta when no attachment to aorta is present).
- N1 and N2 node resection and mapping should be a routine component of lung cancer resections—a minimum of three N2 stations sampled or complete lymph node dissection.
- Formal ipsilateral mediastinal lymph node dissection is indicated for patients undergoing resection for stage IIIA (N2) disease.
- Complete resection requires free resection margins, systematic node dissection or sampling, and the highest mediastinal node negative for tumor. The resection is defined as incomplete whenever there is involvement of resection margins, unremoved positive lymph nodes, or positive pleural or pericardial effusions. A complete resection is referred to as R0, microscopically positive resection as R1, and macroscopic residual tumor as R2.
- Patients with pathologic stage II or greater should be referred to medical oncology for evaluation.
- Consider referral to a radiation oncologist for resected stage IIIA.

The Role of Surgery in Patients with Stage IIIA (N2) NSCLC

The role of surgery in patients with pathologically documented N2 disease remains controversial. Two randomized trials evaluated the role of surgery in this population, but neither showed an overall survival benefit with the use of surgery. However, this population is heterogeneous and the panel believes that these trials did not sufficiently evaluate the nuances present with the heterogeneity of N2 disease and the likely oncologic benefit of surgery in specific clinical situations.

- The presence or absence of N2 disease should be vigorously determined by both radiologic and invasive staging prior to the initiation of therapy since the presence of mediastinal nodal disease has a profound impact on prognosis and treatment decisions. (NSCL-1, NSCL-2, and NSCL-6)
- Patients with occult-positive N2 nodes discovered at the time of pulmonary resection should continue with the planned resection along with formal mediastinal lymph node dissection. If N2 disease is noted in patients undergoing VATS, the surgeon may consider stopping the procedure so that induction therapy can be administered before surgery; however, continuing the procedure is also an option.
- The determination of the role of surgery in a patient with N2-positive lymph nodes should be made prior to the initiation of any therapy by a multidisciplinary team, including a board-certified thoracic surgeon who has a major part of his/her practice dedicated to thoracic oncology.
- The presence of N2-positive lymph nodes substantially increases the likelihood of positive N3 lymph nodes. Pathologic evaluation of the mediastinum must include evaluation of the subcarinal station and contralateral lymph nodes. EBUS +/- EUS are additional techniques for minimally invasive pathologic mediastinal staging that are complementary to mediastinoscopy. Even when these modalities are employed it is important to have an adequate evaluation of the number of stations involved and biopsy and documentation of negative contralateral lymph node involvement prior to a final treatment decision.

The Role of Surgery in Patients with Stage IIIA (N2) NSCLC is continued on NSCL-B 3 of 4 through NSCL-B 4 of 4
The Role of Surgery in Patients with Stage IIIA (N2) NSCLC

• Repeat mediastinoscopy, while possible, is technically difficult and has a lower accuracy compared to primary mediastinoscopy. One possible strategy is to perform EBUS (± EUS) in the initial pretreatment evaluation and reserve mediastinoscopy for nodal restaging after neoadjuvant therapy.

• Patients with a single lymph node smaller than 3 cm can be considered for a multimodality approach that includes surgical resection.

• Restaging after induction therapy is difficult to interpret, but CT +/- PET should be performed to exclude disease progression or interval development of metastatic disease.

• Patients with negative mediastinum after neoadjuvant therapy have a better prognosis.

• Neoadjuvant chemoradiotherapy is used in 50% of the NCCN Member Institutions, while neoadjuvant chemotherapy is used in the other 50%. Overall survival appears similar provided RT is given postoperatively, if not given preoperatively. Neoadjuvant chemoradiotherapy is associated with higher rates of pathologic complete response and negative mediastinal lymph nodes. However, that is achieved at the expense of higher rates of acute toxicity and increased cost.

• When neoadjuvant chemoradiotherapy is used with doses lower than those used for standard definitive therapy, all efforts should be made to minimize any possible breaks in radiotherapy for surgical evaluation. Treatment breaks of more than 1 week are considered unacceptable.

• When timely surgical evaluation is not available, the strategy of neoadjuvant chemoradiotherapy should not be used. Another option in individual cases, and with the agreement of the thoracic surgeon, is to complete definitive chemoradiotherapy prior to re-evaluation and consideration for surgery. If a surgeon or center is uncertain about the feasibility or safety of resection after definitive doses of radiation, consider obtaining an additional surgical opinion from a high-volume specialized center. These operations may also benefit from additional considerations of soft tissue flap coverage in the radiation field at the time of resection.

• Data from a large multi-institutional trial indicate that pneumonectomy after neoadjuvant chemoradiotherapy has unacceptable morbidity and mortality. However, it is not clear if this is also true with neoadjuvant chemotherapy alone. Further, many groups have challenged that cooperative group finding with single-institution experiences demonstrating safety of pneumonectomy after induction therapy. In addition, there is no evidence that adding RT to induction regimens for patients with operable stage IIIA (N2) disease improves outcomes compared to induction chemotherapy.

A questionnaire was submitted to the NCCN Member Institutions in 2010 regarding their approach to patients with N2 disease. Their responses indicate the patterns of practice when approaching this difficult clinical problem.

a) Would consider surgery in patients with one N2 lymph node station involved by a lymph node smaller than 3 cm: (90.5%)

b) Would consider surgery with more than one N2 lymph node station involved, as long as no lymph node was bigger than 3 cm: (47.6%)

c) Uses EBUS (± EUS) in the initial evaluation of the mediastinum: (80%)

d) Uses pathologic evaluation of the mediastinum, after neoadjuvant therapy, to make a final decision before surgery: (40.5%)

e) Would consider neoadjuvant therapy followed by surgery when a patient is likely, based on initial evaluation, to require a pneumonectomy: (54.8%)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
The Role of Surgery in Patients with Stage IIIA (N2) NSCLC - References

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
General Principles (see Table 1. Commonly Used Abbreviations in Radiation Therapy)

- Determination of the appropriateness of radiation therapy (RT) should be made by board-certified radiation oncologists who perform lung cancer RT as a prominent part of their practice.
- RT has a potential role in all stages of NSCLC, as either definitive or palliative therapy. Radiation oncology input as part of a multidisciplinary evaluation or discussion should be provided for all patients with NSCLC.
- The critical goals of modern RT are to maximize tumor control and to minimize treatment toxicity. A minimum technologic standard is CT-planned 3D-CRT.¹
- More advanced technologies are appropriate when needed to deliver curative RT safely. These technologies include (but are not limited to) 4D-CT and/or PET/CT simulation, IMRT/VMAT, IGRT, motion management, and proton therapy (https://www.astro.org/Daily-Practice/Reimbursement/Model-Policies/Model-Policies/). Nonrandomized comparisons of using advanced technologies versus older techniques demonstrate reduced toxicity and improved survival.²⁻⁴ In a prospective trial of definitive chemo/RT for stage III NSCLC (RTOG 0617), IMRT was associated with a nearly 60% decrease (from 7.9% to 3.5%) in high-grade radiation pneumonitis and similar survival and tumor control outcomes despite a higher proportion of stage IIIB and larger treatment volumes compared to 3D-CRT;⁵ as such, IMRT is preferred over 3D-CRT in this setting.
- Centers using advanced technologies should implement and document modality-specific quality assurance measures. The ideal is external credentialing of both treatment planning and delivery such as required for participation in RTOG clinical trials employing advanced technologies. Useful references include the ACR Practice Parameters and Technical Standards (http://www.acr.org/~/media/ACR/Documents/PGTS/toc.pdf).

Early-Stage NSCLC (Stage I, selected node negative Stage IIA)

- SABR (also known as SBRT) is recommended for patients who are medically inoperable or who refuse to have surgery after thoracic surgery evaluation. SABR has achieved primary tumor control rates and overall survival, comparable to lobectomy and higher than 3D-CRT in nonrandomized and population-based comparisons in medically inoperable or older patients.⁶⁻¹¹
- SABR is also an appropriate option for patients with high surgical risk (able to tolerate sublobar resection but not lobectomy [e.g., age ≥75 years, poor lung function]). SABR and sublobar resection achieve comparable cancer-specific survival and primary tumor control.¹²⁻¹³
- A combined analysis of two randomized trials (that individually did not complete accrual) of SABR vs. lobectomy in operable patients found similar cancer-specific outcomes and improved toxicity profile and survival for SABR compared to surgery.¹⁴ This analysis does not provide sufficient data to change the standard of care for good surgical candidates but strengthens the indication for SABR in patients with relative contraindications for surgery or who refuse surgery.
- For institutions without an established SABR program, more modestly hypofractionated or dose-intensified conventionally fractionated 3D-CRT regimens are less preferred alternatives.¹⁵⁻¹⁷
- In patients treated with surgery, postoperative radiotherapy (PORT) is not recommended unless there are positive margins or upstaging to N2 (see Locally Advanced NSCLC in this section).
Locally Advanced NSCLC (Stage II-III)

- Concurrent chemotherapy/RT is recommended for patients with inoperable stage II (node positive) and stage III NSCLC followed by consolidation durvalumab for stage III.
- RT interruptions and dose reductions for manageable acute toxicities should be avoided by employing supportive care.
- Sequential chemotherapy/RT or RT alone is appropriate for frail patients unable to tolerate concurrent therapy. Accelerated RT regimens may be beneficial, particularly if concurrent chemotherapy would not be tolerated (ie, in a sequential or RT-only approach).
- RT has a role before or after surgery.
 - Preoperative concurrent chemotherapy/RT is an option for patients with resectable stage IIIA (minimal N2 and treatable with lobectomy) and is recommended for resectable superior sulcus tumors.
 - Preoperative chemotherapy and postoperative RT is an alternative for patients with resectable stage IIIA. The optimal timing of RT in trimodality therapy (preoperative with chemotherapy or postoperative) is not established and is controversial.
 - The determination of resectability in trimodality therapy should be made prior to initiation of all treatment. Upfront multidisciplinary consultation is particularly important when considering surgical treatment of stage III NSCLC.
 - In patients with clinical stage I/II upstaged surgically to N2+, PORT appears to improve survival significantly as an adjunct to postoperative chemotherapy in non-randomized analyses. Although the optimal sequence is not established, PORT is generally administered after postoperative chemotherapy. PORT with concurrent chemotherapy can be administered safely in medically fit patients and is recommended for positive resection margins.
 - PORT is not recommended for patients with pathologic stage N0-1 disease, because it has been associated with increased mortality, at least when using older RT techniques.

Advanced/Metastatic NSCLC (Stage IV)

- RT is recommended for local palliation or prevention of symptoms (such as pain, bleeding, or obstruction).
- Definitive local therapy to isolated or limited metastatic sites (oligometastases) (including but not limited to brain, lung, and adrenal gland) achieves prolonged survival in a small proportion of well-selected patients with good performance status who have also received radical therapy to the intrathoracic disease. Definitive RT to oligometastases, particularly SABR, is an appropriate option in such cases if it can be delivered safely to the involved sites. A randomized phase II trial of local consolidative therapy (RT or surgery) to oligometastatic lesions versus maintenance systemic therapy or observation for patients not progressing on systemic therapy found significantly improved progression-free survival for local consolidative therapy.
- See the NCCN Guidelines for Central Nervous System Cancers regarding RT for brain metastases.
PRINCIPLES OF RADIATION THERAPY (3 of 10)

Target Volumes, Prescription Doses, and Normal Tissue Dose Constraints (See Tables 2–5 on NSCL-C 7 of 10 and NSCL-C 8 of 10)

- ICRU Reports 62 and 83 detail the current definitions of target volumes for 3D-RT and IMRT. GTV comprises the known extent of disease (primary and nodal) on imaging and pathologic assessment, CTV includes regions of presumed microscopic extent or dissemination, and PTV comprises the ITV (which includes margin for target motion) plus a setup margin for positioning and mechanical variability.

- PTV margin can be decreased by immobilization, motion management, and IGRT techniques.

- Consistent delineation of normal structures is critical for evaluating plans for safety. The RTOG consensus lung-contouring atlas is a useful resource.

- Commonly used prescription doses and normal tissue dose constraints are summarized in Tables 2 through 5. These are based on published experience, ongoing trials, historical data, modeling, and empirical judgment. Useful references include the recent reviews of normal organ dose responses from the QUANTEC project. Because risk of normal organ toxicity increases with dose, doses to normal organs should be kept as low as reasonably achievable rather than simply meeting nominal constraints. This is generally facilitated by more advanced techniques to achieve better dose conformity.

Node-Negative Early-Stage SABR

- The high-dose intensity and conformity of SABR require minimizing the PTV.

- For SABR, intensive regimens of BED ≥100 Gy are associated with significantly better local control and survival than less intensive regimens. In the United States, only regimens of ≤5 fractions meet the arbitrary billing code definition of SBRT, but slightly more protracted regimens are appropriate as well. For centrally located tumors (defined variably as within 2 cm of the proximal bronchial tree and/or abutting mediastinal pleura) and even ultra-central tumors (defined as abutting the proximal bronchial tree), 4 to 10 fraction risk-adapted SABR regimens appear to be effective and safe, while 54 to 60 Gy in 3 fractions is unsafe and should be avoided. The maximum tolerated dose for 5-fraction regimens was studied prospectively in RTOG 0813; preliminary results demonstrate no high-grade toxicities at 50 Gy in 5 fractions.

- SABR is most commonly used for tumors up to 5 cm in size, though selected larger isolated tumors can be treated safely if normal tissue constraints are respected.

- Prescription doses incompletely describe the actual delivered doses, which also strongly depend on how the dose is prescribed (to the isocenter vs. an isodose volume covering a proportion of the PTV), the degree of dose heterogeneity, whether tissue density heterogeneity corrections are used, and the type of dose calculation algorithm. All of these must be considered when interpreting or emulating regimens from prior studies.
PRINCIPLES OF RADIATION THERAPY (4 of 10)

Locally Advanced Stage/Conventionally Fractionated RT

• IFI omitting ENI allows tumor dose escalation and is associated with a low risk of isolated nodal relapse, particularly in PET/CT–staged patients.61-65 Two randomized trials found improved survival for IFI versus ENI, possibly because it enabled dose escalation.66 IFI is reasonable in order to optimize definitive dosing to the tumor.67 IFI is reasonable in order to optimize definitive dosing to the tumor and/or decrease normal tissue toxicity.

• The most commonly prescribed doses for definitive RT are 60 to 70 Gy in 2 Gy fractions. Doses of at least 60 Gy should be given.68 Dose escalation in RT alone,69 sequential chemo/RT,70 or concurrent chemo/RT71 is associated with better survival in non-randomized comparisons. While optimal RT dose intensification remains a valid question, higher doses of 74 Gy are not currently recommended for routine use.72-76 A meta-analysis demonstrated improved survival with accelerated fractionation RT regimens,77 and individualized accelerated RT dose intensification is now being evaluated in a randomized trial (RTOG 1106).

• Doses of 45 to 54 Gy in 1.8 to 2 Gy fractions are standard preoperative doses.78 Definitive RT doses delivered as preoperative chemoRT can safely be administered and achieve promising nodal clearance and survival rates,79-82 but require experience in thoracic surgical techniques to minimize the risk of surgical complications after high-dose RT.

• In PORT, the CTV includes the bronchial stump and high-risk draining lymph node stations.83 Standard doses after complete resection are 50 to 54 Gy in 1.8 to 2 Gy fractions, but a boost may be administered to high-risk regions including areas of nodal extracapsular extension or microscopic positive margins.33,34,84 Lung dose constraints should be more conservative as tolerance appears to be reduced after surgery. The ongoing European LungART trial provides useful guidelines for PORT technique.85

Advanced Stage/Palliative RT

• The dose and fractionation of palliative RT should be individualized based on goals of care, symptoms, performance status, and logistical considerations. Shorter courses of RT provide similar pain relief as longer courses, but with a higher potential need for retreatment.86-89 and are preferred for patients with poor performance status and/or shorter life expectancy. For palliation of thoracic symptoms, higher dose/longer-course thoracic RT (eg, ≥30 Gy in 10 fractions) is associated with modestly improved survival and symptoms, particularly in patients with good performance status.90,91 When higher doses (>30 Gy) are warranted, technologies to reduce normal tissue irradiation (at least 3D-CRT and including IMRT or proton therapy as appropriate) may be used.
PRINCIPLES OF RADIATION THERAPY (5 of 10)

Radiation Therapy Simulation, Planning, and Delivery

- Simulation should be performed using CT scans obtained in the RT treatment position with appropriate immobilization devices. IV contrast with or without oral contrast is recommended for better target/organ delineation whenever possible in patients with central tumors or nodal disease. Because IV contrast can affect tissue heterogeneity correction calculations, density masking or use of a pre-contrast scan may be needed when intense enhancement is present.

- PET/CT significantly improves targeting accuracy, especially for patients with significant atelectasis and when IV CT contrast is contraindicated. A randomized trial of PET/CT versus CT-only RT planning demonstrated improved preemption of futile radical RT, decreased recurrences, and a trend toward improved overall survival with PET/CT RT planning. Given the potential for rapid progression of NSCLC, PET/CT should be obtained preferably within 4 weeks before treatment. It is ideal to obtain PET/CT in the treatment position.

- Tumor and organ motion, especially owing to breathing, should be assessed or accounted for at simulation. Options include fluoroscopy, inhale/exhale or slow scan CT, or, ideally, 4D-CT.

- Photon beam energy should be individualized based on the anatomic location of the tumors and beam paths. In general, photon energies between 4 to 10 MV are recommended for beams passing through low-density lung tissue before entering the tumor. When there is no air gap before the beam enters the tumor (such as for some large mediastinal tumors or tumors attached to the chest wall), higher energies may improve the dose distribution, especially when using a smaller number of fixed beam angles.

- Tissue heterogeneity correction and accurate dose calculation algorithms that account for buildup and lateral electron scatter effects in heterogeneous density tissues are recommended. Heterogeneity correction with simple pencil beam algorithms is not recommended.

- Respiratory motion should be managed when motion is excessive. This includes (but is not limited to) forced shallow breathing with abdominal compression, accelerator beam gating with the respiratory cycle, dynamic tumor tracking, active breathing control (ABC), or coaching/biofeedback techniques. If motion is minimal or the ITV is small, motion-encompassing targeting is appropriate. A useful resource for implementation of respiratory motion management is the report of AAPM Task Group 76.

- IGRT—including (but not limited to) orthogonal pair planar imaging and volumetric imaging (such as CBCT or CT on rails)—is recommended when using SABR and 3D-CRT/IMRT with steep dose gradients around the target, when OARs are in close proximity to high-dose regions, and when using complex motion management techniques.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Table 1. Commonly Used Abbreviations in Radiation Therapy

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Radiation Therapy or Radiotherapy</td>
</tr>
<tr>
<td>2D-RT</td>
<td>2-Dimensional RT</td>
</tr>
<tr>
<td>3D-CRT</td>
<td>3-Dimensional Conformal RT</td>
</tr>
<tr>
<td>4D-CT</td>
<td>4-Dimensional Computed Tomography</td>
</tr>
<tr>
<td>AAPM</td>
<td>American Association of Physicists in Medicine</td>
</tr>
<tr>
<td>ABC</td>
<td>Active Breathing Control</td>
</tr>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>ASTRO</td>
<td>American Society for Radiation Oncology</td>
</tr>
<tr>
<td>BED</td>
<td>Biologically Effective Dose</td>
</tr>
<tr>
<td>CBCT</td>
<td>Cone-Beam CT</td>
</tr>
<tr>
<td>CTV*</td>
<td>Clinical Target Volume</td>
</tr>
<tr>
<td>ENI</td>
<td>Elective Nodal Irradiation</td>
</tr>
<tr>
<td>GTV*</td>
<td>Gross Tumor Volume</td>
</tr>
<tr>
<td>ICRU</td>
<td>International Commission on Radiation Units and Measurements</td>
</tr>
<tr>
<td>IFI</td>
<td>Involved Field Irradiation</td>
</tr>
<tr>
<td>IGRT</td>
<td>Image-Guided RT</td>
</tr>
<tr>
<td>IMRT</td>
<td>Intensity-Modulated RT</td>
</tr>
<tr>
<td>ITV*</td>
<td>Internal Target Volume</td>
</tr>
<tr>
<td>OAR</td>
<td>Organ at Risk</td>
</tr>
<tr>
<td>OBI</td>
<td>On-Board Imaging</td>
</tr>
<tr>
<td>PORT</td>
<td>Postoperative RT</td>
</tr>
<tr>
<td>PTV*</td>
<td>Planning Target Volume</td>
</tr>
<tr>
<td>QUANTEC</td>
<td>Quantitative Analysis of Normal Tissue Effects in the Clinic</td>
</tr>
<tr>
<td>RTOG</td>
<td>Radiation Therapy Oncology Group now part of NRG Oncology</td>
</tr>
<tr>
<td>SABR</td>
<td>Stereotactic Ablative RT, also known as Stereotactic Body RT (SBRT)</td>
</tr>
<tr>
<td>VMAT</td>
<td>Volumetric Modulated Arc Therapy</td>
</tr>
</tbody>
</table>

*Refer to ICRU Report 83 for detailed definitions.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Table 2. Commonly Used Doses for SABR

<table>
<thead>
<tr>
<th>Total Dose</th>
<th># Fractions</th>
<th>Example Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>25–34 Gy</td>
<td>1</td>
<td>Peripheral, small (<2 cm) tumors, esp. >1 cm from chest wall</td>
</tr>
<tr>
<td>45–60 Gy</td>
<td>3</td>
<td>Peripheral tumors and >1 cm from chest wall</td>
</tr>
<tr>
<td>48–50 Gy</td>
<td>4</td>
<td>Central or peripheral tumors <4–5 cm, especially <1 cm from chest wall</td>
</tr>
<tr>
<td>50–55 Gy</td>
<td>5</td>
<td>Central or peripheral tumors, especially <1 cm from chest wall</td>
</tr>
<tr>
<td>60–70 Gy</td>
<td>8–10</td>
<td>Central tumors</td>
</tr>
</tbody>
</table>

Table 3. Maximum Dose Constraints for SABR*

<table>
<thead>
<tr>
<th>OAR/Regimen</th>
<th>1 Fraction</th>
<th>3 Fractions</th>
<th>4 Fractions</th>
<th>5 Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord</td>
<td>14 Gy</td>
<td>18 Gy (6 Gy/fx)</td>
<td>26 Gy (6.5 Gy/fx)</td>
<td>30 Gy (6 Gy/fx)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>15.4 Gy</td>
<td>27 Gy (9 Gy/fx)</td>
<td>30 Gy (7.5 Gy/fx)</td>
<td>105% of PTV prescription^</td>
</tr>
<tr>
<td>Brachial plexus</td>
<td>17.5 Gy</td>
<td>24 Gy (8 Gy/fx)</td>
<td>27.2 Gy (6.8 Gy/fx)</td>
<td>32 Gy (6.4 Gy/fx)</td>
</tr>
<tr>
<td>Heart/pericardium</td>
<td>22 Gy</td>
<td>30 Gy (10 Gy/fx)</td>
<td>34 Gy (8.5 Gy/fx)</td>
<td>105% of PTV prescription^</td>
</tr>
<tr>
<td>Great vessels</td>
<td>37 Gy</td>
<td>NS</td>
<td>49 Gy (12.25 Gy/fx)</td>
<td>105% of PTV prescription^</td>
</tr>
<tr>
<td>Trachea & proximal bronchi</td>
<td>20.2 Gy</td>
<td>30 Gy (10 Gy/fx)</td>
<td>34.8 Gy (8.7 Gy/fx)</td>
<td>105% of PTV prescription^</td>
</tr>
<tr>
<td>Rib</td>
<td>30 Gy</td>
<td>30 Gy (10 Gy/fx)</td>
<td>40 Gy (10 Gy/fx)</td>
<td>NS</td>
</tr>
<tr>
<td>Skin</td>
<td>26 Gy</td>
<td>24 Gy (8 Gy/fx)</td>
<td>36 Gy (9 Gy/fx)</td>
<td>32 Gy (6.4 Gy/fx)</td>
</tr>
<tr>
<td>Stomach</td>
<td>12.4 Gy</td>
<td>NS</td>
<td>27.2 Gy (6.8 Gy/fx)</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Based on constraints used in recent RTOG SABR trials (RTOG 0618, 0813, & 0915).
^for central tumor location. NS = not specified

Please note - Tables 2–5 provide doses and constraints used commonly or in past clinical trials as useful references rather than specific recommendations.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Table 4. Commonly Used Doses for Conventionally Fractionated and Palliative RT

<table>
<thead>
<tr>
<th>Treatment Type</th>
<th>Total Dose</th>
<th>Fraction Size</th>
<th>Treatment Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitive RT with or without chemotherapy</td>
<td>60–70 Gy</td>
<td>2 Gy</td>
<td>6–7 weeks</td>
</tr>
<tr>
<td>Preoperative RT</td>
<td>45–54 Gy</td>
<td>1.8–2 Gy</td>
<td>5 weeks</td>
</tr>
<tr>
<td>Postoperative RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Negative margins</td>
<td>50–54 Gy</td>
<td>1.8–2 Gy</td>
<td>5–6 weeks</td>
</tr>
<tr>
<td>• Extracapsular nodal extension or microscopic positive margins</td>
<td>54–60 Gy</td>
<td>1.8–2 Gy</td>
<td>6 weeks</td>
</tr>
<tr>
<td>• Gross residual tumor</td>
<td>60–70 Gy</td>
<td>2 Gy</td>
<td>6–7 weeks</td>
</tr>
<tr>
<td>Palliative RT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Obstructive disease (SVC syndrome or obstructive pneumonia)</td>
<td>30–45 Gy</td>
<td>3 Gy</td>
<td>2–3 weeks</td>
</tr>
<tr>
<td>• Bone metastases with soft tissue mass</td>
<td>20–30 Gy</td>
<td>4–3 Gy</td>
<td>1–2 weeks</td>
</tr>
<tr>
<td>• Bone metastases without soft tissue mass</td>
<td>8–30 Gy</td>
<td>8–3 Gy</td>
<td>1 day–2 weeks</td>
</tr>
<tr>
<td>• Brain metastases</td>
<td>CNS GLs*</td>
<td>CNS GLs*</td>
<td>CNS GLs*</td>
</tr>
<tr>
<td>• Symptomatic chest disease in patients with poor PS</td>
<td>17 Gy</td>
<td>8.5 Gy</td>
<td>1–2 weeks</td>
</tr>
<tr>
<td>• Any metastasis in patients with poor PS</td>
<td>8–20 Gy</td>
<td>8–4 Gy</td>
<td>1 day–1 week</td>
</tr>
</tbody>
</table>

*Note: All recommendations are category 2A unless otherwise indicated.

Table 5. Normal Tissue Dose-Volume Constraints for Conventionally Fractionated RT

<table>
<thead>
<tr>
<th>OAR</th>
<th>Constraints in 30–35 fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal cord</td>
<td>Max ≤50 Gy</td>
</tr>
<tr>
<td>Lung</td>
<td>V20 ≤35%; V5 ≤65%; MLD ≤20 Gy</td>
</tr>
<tr>
<td>Heart**</td>
<td>V40 ≤80%; V45 ≤60%; V60 ≤30%; Mean ≤26 Gy</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Mean ≤34 Gy; Max ≤105% of prescription dose</td>
</tr>
<tr>
<td>Brachial plexus</td>
<td>Max ≤66 Gy</td>
</tr>
</tbody>
</table>

Vxx = % of the whole OAR receiving ≥xx Gy.

**RTOG 0617 data suggest that even lower radiation doses to the heart than previously appreciated may be detrimental to survival after thoracic RT, and more stringent constraints may be appropriate.

Figure 1. ICRU Report 62 Schema of Target Volume Definitions

The arrow illustrates the influence of the organs at risk on delineation of the PTV (thick, full line).

©Journal of the ICRU. Report 62 Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50) 1999, Figure 2.16 from p 16.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Cerfolio RJ, Bryant AS, Jones VL, Cerfolio RM. Pulmonary resection after concurrent chemotherapy and high dose (60 Gy) radiation for non-small cell lung cancer is safe and may provide increased survival. Eur J Cardiothorac Surg 2005;35:718-723; discussion 723.

CHEMOTHERAPY REGIMENS FOR NEOADJUVANT AND ADJUVANT THERAPY

- Cisplatin 50 mg/m² days 1 and 8; vinorelbine 25 mg/m² days 1, 8, 15, 22, every 28 days for 4 cycles\(^a\)
- Cisplatin 100 mg/m² day 1; vinorelbine 30 mg/m² days 1, 8, 15, 22, every 28 days for 4 cycles\(^b,c\)
- Cisplatin 75–80 mg/m² day 1; vinorelbine 25–30 mg/m² days 1 + 8, every 21 days for 4 cycles
- Cisplatin 100 mg/m² day 1; etoposide 100 mg/m² days 1–3, every 28 days for 4 cycles\(^b\)
- Cisplatin 75 mg/m² day 1; gemcitabine 1250 mg/m² days 1, 8, every 21 days for 4 cycles\(^d\)
- Cisplatin 75 mg/m² day 1; docetaxel 75 mg/m² day 1 every 21 days for 4 cycles\(^e\)
- Cisplatin 75 mg/m² day 1, pemetrexed 500 mg/m² day 1 for nonsquamous every 21 days for 4 cycles\(^f\)

Chemotherapy Regimens for Patients with Comorbidities or Patients Not Able to Tolerate Cisplatin

- Carboplatin AUC 6 day 1, paclitaxel 200 mg/m² day 1, every 21 days for 4 cycles\(^g\)
- Carboplatin AUC 5 day 1, gemcitabine 1000 mg/m² days 1, 8, every 21 days for 4 cycles\(^h\)
- Carboplatin AUC 5 day 1, pemetrexed 500 mg/m² day 1 for nonsquamous every 21 days for 4 cycles\(^i\)

All regimens can be used for sequential chemotherapy/RT

CHEMOTHERAPY REGIMENS USED WITH RADIATION THERAPY

Concurrent Chemotherapy/RT Regimens

- Cisplatin 50 mg/m² on days 1, 8, 29, and 36; etoposide 50 mg/m² days 1–5, 29–33; concurrent thoracic RTa,b,*,†
- Cisplatin 100 mg/m² days 1 and 29; vinblastine 5 mg/m²/weekly x 5; concurrent thoracic RTb,*,†
- Carboplatin AUC 5 on day 1, pemetrexed 500 mg/m² on day 1 every 21 days for 4 cycles; concurrent thoracic RTc (nonsquamous)*,†
- Cisplatin 75 mg/m² on day 1, pemetrexed 500 mg/m² on day 1 every 21 days for 3 cycles; concurrent thoracic RTd,e (nonsquamous)*,† ± additional 4 cycles of pemetrexed 500 mg/m²†
- Paclitaxel 45–50 mg/m² weekly; carboplatin AUC 2, concurrent thoracic RTf,*,† ± additional 2 cycles of paclitaxel 200 mg/m² and carboplatin AUC 6†

Consolidation Therapy for Patients with Unresectable Stage III NSCLC, PS 0-1, and No Disease Progression After 2 or More Cycles of Definitive Chemoradiation

Durvalumab 10 mg/kg IV every 2 weeks for up to 12 monthsh

*Regimens can be used as preoperative/adjunctive chemotherapy/RT.
†Regimens can be used as definitive concurrent chemotherapy/RT.

NSCLC Long-term Follow-up Care

- Cancer Surveillance (See NSCL-15)
- Immunizations
 - Annual influenza vaccination
 - Herpes zoster vaccine
 - Pneumococcal vaccination with revaccination as appropriate

See NCCN Guidelines for Survivorship

Counseling Regarding Health Promotion and Wellness

- Maintain a healthy weight
- Adopt a physically active lifestyle (Regular physical activity: 30 minutes of moderate-intensity physical activity on most days of the week)
- Consume a healthy diet with emphasis on plant sources
- Limit consumption of alcohol if one consumes alcoholic beverages

Additional Health Monitoring

- Routine blood pressure, cholesterol, and glucose monitoring
- Bone health: Bone density testing as appropriate
- Dental health: Routine dental examinations
- Routine sun protection

Resources

- National Cancer Institute Facing Forward: Life After Cancer Treatment

Cancer Screening Recommendations

These recommendations are for average-risk individuals and high-risk patients should be individualized.

- Colorectal Cancer:
 See NCCN Guidelines for Colorectal Cancer Screening

- Prostate Cancer:
 See NCCN Guidelines for Prostate Cancer Early Detection

- Breast Cancer:
 See NCCN Guidelines for Breast Cancer Screening

1ACS Guidelines on Nutrition and Physical Activity for Cancer Prevention:

3American Cancer Society Guidelines for Early Detection of Cancer:

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF MOLECULAR AND BIOMARKER ANALYSIS

Molecular Diagnostic Studies in Non-Small Cell Lung Cancer

• Numerous gene alterations have been identified that impact therapy selection. Testing of lung cancer specimens for these alterations is important for identification of potentially efficacious targeted therapies, as well as avoidance of therapies unlikely to provide clinical benefit.

• Some selection approaches for targeted therapy include predictive immunohistochemical analyses, which are distinct from immunohistochemical studies utilized to identify tumor type and lineage.

• Major elements of molecular testing that are critical for utilization and interpretation of molecular results include:
 - Use of a laboratory that is properly accredited, with a minimum of CLIA accreditation
 - Understanding the methodologies that are utilized and the major limitations of those methodologies
 - Understanding the spectrum of alterations tested (and those not tested) by a specific assay
 - Knowledge of whether a tumor sample is subjected to pathologic review and tumor enrichment (ie, microdissection, macrodissection) prior to testing
 - The types of samples accepted by the testing laboratory

• Specimen Acquisition and Management:
 - Although tumor testing has been primarily focused on use of formalin-fixed paraffin-embedded (FFPE) tissues, increasingly, laboratories accept other specimen types, notably cytopathology smear preparations.
 - A major limitation in obtaining molecular testing results for NSCLC occurs when minimally invasive techniques are used to obtain samples; the yield may be insufficient for molecular, biomarker, and histologic testing. Therefore, bronchoscopists and interventional radiologists should procure sufficient tissue to enable all appropriate testing.
 - When tissue is minimal, laboratories should deploy techniques to maximize tissue for molecular and ancillary testing, including dedicated histology protocols for small biopsies, including “up-front” slide sectioning for diagnostic and predictive testing.

• Testing Methodologies
 - Appropriate possible testing methodologies are indicated below for each analyte separately; however, several methodologies are generally considerations for use:
 ◊ Real-time polymerase chain reaction (PCR) can be used in a highly targeted fashion (specific mutations targeted). When this technology is deployed, only those specific alterations that are targeted by the assay are assessed.
 ◊ Sanger sequencing requires the greatest degree of tumor enrichment. Unmodified Sanger sequencing is not appropriate for detection of mutations in tumor samples with less than 25% to 30% tumor after enrichment and is not appropriate for assays in which identification of subclonal events (eg, resistance mutations) is important. If Sanger sequencing is utilized, tumor enrichment methodologies are nearly always recommended.
 ◊ Next-generation sequencing (NGS) is increasingly utilized in clinical laboratories. Not all types of alterations are detected by individual NGS assays and it is important to be familiar with the types of alterations identifiable in individual assays or combination(s) of assays.
 ◊ Other methodologies may be utilized, including multiplex approaches not listed above (ie, SNaPshot, MassARRAY).
 ◊ Fluorescence in situ hybridization (FISH) analysis is utilized for many assays examining copy number, amplification, and structural alterations such as gene rearrangements.
 ◊ Immunohistochemistry (IHC) is specifically utilized for some specific analytes, and can be a useful surrogate or screening assay for others.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
• Molecular Targets for Analysis
 - In general, the mutations/alterations described below are seen in a non-overlapping fashion, although between 1%–3% of NSCLC may harbor concurrent alterations.
 - **EGFR** (Epidermal Growth Factor Receptor) Gene Mutations: EGFR is a receptor tyrosine kinase normally found on the surface of epithelial cells and is often overexpressed in a variety of human malignancies.
 ◊ The most commonly described mutations in **EGFR** (exon 19 deletions, p.L858R point mutation in exon 21) are associated with responsiveness to EGFR tyrosine kinase inhibitor (TKI) therapy; most recent data indicate that tumors that do not harbor a sensitizing **EGFR** mutation should not be treated with EGFR TKI in any line of therapy.
 ◊ Many of the less commonly observed alterations in EGFR, which cumulatively account for ~10% of **EGFR**-mutated NSCLC (ie, exon 19 insertions, p.L861Q, p.G719X, p.S768I) are also associated with responsiveness to EGFR TKI therapy, although the number of studied patients is lower.
 ◊ Some mutations in **EGFR** are associated with lack of responsiveness to EGFR TKI therapy, including most **EGFR** exon 20 insertions, and p.T790M.
 – Most **EGFR** exon 20 insertion mutations predict resistance to clinically achievable levels of TKIs.
 – The exception is a rare **EGFR** exon 20 insertion variant, p.A763_Y764insFQEA, which is associated with responsiveness to EGFR TKI therapy. Therefore, knowledge of an **EGFR** exon 20 insertion must be included in the specific sequence alteration.
 – The finding of p.T790M is most commonly associated with relapse following initial therapy with EGFR TKI, which is a known mechanism of resistance. If identified prior to TKI exposure, genetic counseling should be considered, because germline p.T790M is associated with familial lung cancer predisposition and additional testing is warranted.
 ◊ As use of NGS testing increases, additional **EGFR** variants are increasingly identified; however, the clinical implications of individual alterations are unlikely to be well established.
 ◊ Some clinicopathologic features—such as smoking status, ethnicity, and histology—are associated with the presence of an **EGFR** mutation; however, these features should not be utilized in selecting patients for testing.
 - **ALK** (Anaplastic Lymphoma Kinase) Gene Rearrangements: ALK is a receptor tyrosine kinase that can be rearranged in NSCLC, resulting in dysregulation and inappropriate signaling through the ALK kinase domain.
 ◊ The most common fusion partner seen with ALK is echinoderm microtubule-associated protein-like 4 (EML4), although a variety of other fusion partners have been identified.
 ◊ The presence of an **ALK** rearrangement is associated with responsiveness to ALK TKIs, with recent studies demonstrating improved efficacy of alectinib over crizotinib in the first-line setting.
 ◊ Some clinicopathologic features—such as smoking status and histology have been associated with the presence of an **ALK** rearrangement; however, these features should not be utilized in selecting patients for testing.
 ◊ Testing Methodologies: FISH break-apart probe methodology was the first methodology deployed widely. IHC can be deployed as an effective screening strategy. FDA-approved IHC (ALK [D5F3] CDx Assay) can be utilized as a stand-alone test, not requiring confirmation by FISH, although secondary confirmation is encouraged. Numerous NGS methodologies can detect **ALK** fusions, and targeted real-time PCR assays are utilized in some settings, although they are unlikely to detect fusions with novel partners.
PRINCIPLES OF MOLECULAR AND BIOMARKER ANALYSIS

- **ROS1** (ROS proto-oncogene 1) Gene Rearrangements: ROS1 is a receptor tyrosine kinase that can be rearranged in NSCLC, resulting in dysregulation and inappropriate signaling through the ROS1 kinase domain.
 - Numerous fusion partners are seen with ROS1, and common fusion partners include: CD74, SLC34A2, CCDC6, and FIG.
 - The presence of a ROS1 rearrangement is associated with responsiveness to oral ROS1 TKIs.
 - Some clinicopathologic features—such as smoking status and histology—have been associated with the presence of a ROS1 rearrangement; however, these features should not be utilized in selecting patients for testing.
 - Testing Methodologies: FISH break-apart probe methodology can be deployed; however, it may under-detect the FIG-ROS1 variant. IHC approaches can be deployed; however, IHC for ROS1 fusions has low specificity, and follow-up confirmatory testing is a necessary component of utilizing ROS1 IHC as a screening modality. Numerous NGS methodologies can detect ROS1 fusions, and targeted real-time PCR assays are utilized in some settings, although they are unlikely to detect fusions with novel partners (which may lead to under-detection of ROS1 fusion events).

- **BRAF** (B-Raf proto-oncogene) point mutations: BRAF is a serine/threonine kinase that is part of the canonical MAP/ERK signaling pathway. Activating mutations in BRAF result in unregulated signaling through the MAP/ERK pathway.
 - Mutations in BRAF can be seen in NSCLC. The presence of a specific mutation resulting in a change in amino acid position 600 (p.V600E) has been associated with responsiveness to combined therapy with oral inhibitors of BRAF and MEK.
 - Note that other mutations in BRAF are observed in NSCLC, and the impact of those mutations on therapy selection is not well understood at this time.
 - Testing Methodologies: Real-time PCR, Sanger sequencing (ideally paired with tumor enrichment), and NGS are the most commonly deployed methodologies for examining BRAF mutation status. While an anti-BRAF p.V600E-specific monoclonal antibody is commercially available, and some studies have examined utilizing this approach, it should only be deployed after extensive validation.

- **KRAS** (KRAS proto-oncogene) point mutations: KRAS is a G-protein with intrinsic GTPase activity, and activating mutations result in unregulated signaling through the MAP/ERK pathway.
 - Mutations in KRAS are most commonly seen at codon 12, although other mutations can be seen in NSCLC.
 - The presence of a KRAS mutation is prognostic of poor survival when compared to patients with tumors without KRAS mutation.
 - Mutations in KRAS have been associated with reduced responsiveness to EGFR TKI therapy.
 - Owing to the low probability of overlapping targetable alterations, the presence of a mutation in KRAS may identify patients who will not benefit from further molecular testing.

- Testing in the Setting of Progression on Targeted Therapy:
 - For many of the above listed analytes, there is growing recognition of the molecular mechanisms of resistance to therapy. Re-testing of a sample that is actively progressing while exposed to targeted therapy can shed light on appropriate next therapeutic steps:
 - For patients with an underlying **EGFR** sensitizing mutation who have been treated with EGFR TKI, minimum appropriate testing includes high-sensitivity evaluation for p.T790M; when there is no evidence of p.T790M, testing for alternate mechanisms of resistance (**MET** amplification, **ERBB2** amplification) may be used to direct patients for additional therapies. The presence of p.T790M can direct patients to third-generation EGFR TKI therapy.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF MOLECULAR AND BIOMARKER ANALYSIS

• Testing in the Setting of Progression on Targeted Therapy (continued)
 – Assays for the detection of EGFR p.T790M should be designed to have an analytic sensitivity of a minimum of 5% allelic fraction. The original sensitizing mutation can be utilized as an internal control in many assays to determine whether a p.T790M is within the range of detection if present as a sub-clonal event.
 ◊ For patients with underlying ALK rearrangement who have been treated with ALK TKI, it is unclear whether identification of specific tyrosine kinase domain mutation can identify appropriate next steps in therapy, although some preliminary data suggest that specific kinase domain mutations can impact next line of therapy.

• IHC for Biomarker Selection in NSCLC:
 ‣ PD-L1 (Programmed Death Ligand 1): PD-L1 is a co-regulatory molecule that can be expressed on tumor cells and inhibit T-cell–mediated cell death. T-cells express PD-1, a negative regulator, which binds to ligands including PD-L1 (CD274) or PD-L2 (CD273). In the presence of PD-L1, T-cell activity is suppressed.
 ◊ Checkpoint inhibitor antibodies block the PD-1 and PD-L1 interaction, thereby improving the antitumor effects of endogenous T cells.
 ◊ IHC for PD-L1 can be utilized to identify disease most likely to respond to first-line immunotherapy.
 – Various antibody clones have been developed for IHC analysis of PD-L1 expression, and while several show relative equivalence, some do not.
 – Interpretation of PD-L1 IHC is typically focused on the proportion of tumor cells expressing membranous staining at any level and therefore is a linear variable.
 – The FDA-approved IHC assay for PD-L1 utilizes a cutoff of 50% tumor proportion score for first-line and 1% tumor proportion score for second-line therapy with pembrolizumab.
 – The definition of positive and negative testing is dependent on the individual antibody and platform deployed, which may be unique to each checkpoint inhibitor therapy. The potential for multiple different assays for PD-L1 has raised concern among both pathologists and oncologists.
 ‣ ALK fusions: IHC assays for ALK can serve as a screening modality for further ALK testing, and can alternatively be used as a stand-alone test to determine eligibility for ALK TKI. An FDA-approved IHC assay for ALK is available.
 ‣ ROS1 fusions: IHC assays for ROS1 should only be deployed as a screening modality for further ROS1 testing, because the specificity of a positive result is low. Positive ROS1 IHC should not be utilized to select patients for TKI therapy without additional confirmatory testing. Currently there is not an FDA-approved IHC assay for ROS1.
 ‣ BRAF p.V600E mutations: An antibody specific to the p.V600E mutation is available. Some studies have examined utilization of this antibody in cases of NSCLC; however, optimization of this antibody may be tumor-specific and care should be exercised when using this approach.
 ‣ EGFR mutations: Limited mutation-specific antibodies are available for EGFR. While these antibodies have good specificity, the sensitivity is lacking, and it is not recommended to use EGFR mutation-specific antibodies except in circumstances of extremely limited tissue, because many sensitizing EGFR mutations are not detected with this approach.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
EMERGING TARGETED AGENTS FOR PATIENTS WITH GENETIC ALTERATIONS

<table>
<thead>
<tr>
<th>Genetic Alteration (ie, Driver event)</th>
<th>Available Targeted Agents with Activity Against Driver Event in Lung Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level MET amplification or MET exon 14 skipping mutation</td>
<td>Crizotinib<sup>1-5</sup></td>
</tr>
</tbody>
</table>
| RET rearrangements | Cabozantinib^{6,7}
Vandetanib⁸ |
| HER2 mutations | Ado-trastuzumab emtansine⁹ |

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
TARGETED THERAPY FOR ADVANCED OR METASTATIC DISEASE (1 OF 2)

Subsequent Therapy
• Response assessment with CT of known sites of disease with or without contrast every 6–12 weeks. Timing of CT scans within Guidelines parameters is a clinical decision.

Sensitizing *EGFR* Mutation
• First-line therapy
 † Afatinib\(^1\)
 † Erlotinib\(^2\)
 † Gefitinib\(^3,4\)
 † Osimertinib\(^5\)
• Subsequent therapy
 † Osimertinib\(^6\)

ALK Rearrangement
• First-line therapy
 † Alectinib\(^7,8\)
 † Ceritinib\(^9\)
 † Crizotinib\(^10,11\)
• Subsequent therapy
 † Alectinib\(^12,13\)
 † Brigatinib\(^14\)
 † Ceritinib\(^15\)

ROS1 Rearrangement
• First-line therapy
 † Ceritinib\(^16\)
 † Crizotinib\(^17\)

BRAF V600E Mutation
• First-line therapy
 † Dabrafenib/trametinib\(^18\)
• Subsequent therapy
 † Dabrafenib/trametinib\(^19,20\)

PD-L1 Expression
• First-line therapy
 † Pembrolizumab\(^21,22\)
• Subsequent therapy
 † Atezolizumab\(^23\)
 † Nivolumab\(^24,25\)
 † Pembrolizumab\(^26\)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
TARGETED THERAPY FOR ADVANCED OR METASTATIC DISEASE (2 OF 2)

20. Planchor D, Besse B, Kim TM, et al. Updated survival of patients (pts) with previously treated BRAF(V600E)-mutant advanced non-small cell lung cancer (NSCLC) who received dabrafenib (D) or D + trametinib (T) in the phase II BRF113928 study [abstract]. J Clin Oncol 2017;35: Abstract 9075.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
ADVANCED DISEASE:
• The drug regimen with the highest likelihood of benefit with toxicity deemed acceptable to both the physician and the patient should be given as initial therapy for advanced lung cancer.
• Stage, weight loss, performance status, and gender predict survival.
• Platinum-based chemotherapy prolongs survival, improves symptom control, and yields superior quality of life compared to best supportive care.
• Histology of NSCLC is important in the selection of systemic therapy.
• Platinum combinations have generated a plateau in overall response rate (≈ 25%–35%), time to progression (4–6 mo), median survival (8–10 mo), 1-year survival rate (30%–40%), and 2-year survival rate (10%–15%) in fit patients.

Initial Cytotoxic Therapy
• There is superior efficacy and reduced toxicity for cisplatin/pemetrexed in patients with nonsquamous histology, in comparison to cisplatin/gemcitabine.
• There is superior efficacy for cisplatin/gemcitabine in patients with squamous histology, in comparison to cisplatin/pemetrexed.
• Two drug regimens are preferred; a third cytotoxic drug increases response rate but not survival. Single-agent therapy may be appropriate in select patients.
• Response assessment after 2 cycles, then every 2–4 cycles with CT of known sites of disease with or without contrast or when clinically indicated.

Maintenance Therapy
• Continuation maintenance refers to the use of at least one of the agents given in first line, beyond 4–6 cycles, in the absence of disease progression. Switch maintenance refers to the initiation of a different agent, not included as part of the first-line regimen, in the absence of disease progression, after 4–6 cycles of initial therapy.

Subsequent Therapy
• Response assessment with CT of known sites of disease with or without contrast every 6–12 weeks. Timing of CT scans within Guidelines parameters is a clinical decision.

See Initial Cytotoxic Therapy Options for Adenocarcinoma, Large cell, NSCLC NOS on NSCL-G (2 of 4)
See Initial Cytotoxic Therapy Options for Squamous Cell Carcinoma on NSCL-G (3 of 4)
SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE (2 of 4)

Initial Cytotoxic Therapy Options

Adenocarcinoma, Large Cell, NSCLC NOS (PS 0-1)
- **Bevacizumab/carboplatin/paclitaxel (category 1)**
 - **Bevacizumab/carboplatin/pemetrexed**
 - **Bevacizumab/cisplatin/pemetrexed**
- **Carboplatin/paclitaxel (category 1)**
- **Carboplatin/docetaxel (category 1)**
- **Carboplatin/etoposide (category 1)**
- **Carboplatin/gemcitabine (category 1)**
- **Carboplatin/paclitaxel (category 1)**
- **Carboplatin/pemetrexed (category 1)**
- **Cisplatin/docetaxel (category 1)**
- **Cisplatin/etoposide (category 1)**
- **Cisplatin/gemcitabine (category 1)**
- **Cisplatin/paclitaxel (category 1)**
- **Cisplatin/pemetrexed (category 1)**
- **Gemcitabine/docetaxel (category 1)**
- **Gemcitabine/vinorelbine (category 1)**
- **Pembrolizumab/carboplatin/pemetrexed**

Adenocarcinoma, Large Cell, NSCLC NOS (PS 2)
- **Albumin-bound paclitaxel**
- **Carboplatin/docetaxel**
- **Carboplatin/etoposide**
- **Carboplatin/gemcitabine**
- **Carboplatin/paclitaxel**
- **Carboplatin/pemetrexed**
- **Docetaxel**
- **Gemcitabine**
- **Gemcitabine/docetaxel**
- **Gemcitabine/vinorelbine**
- **Paclitaxel**
- **Pemetrexed**

*Albumin-bound paclitaxel may be substituted for either paclitaxel or docetaxel in patients who have experienced hypersensitivity reactions after receiving paclitaxel or docetaxel despite premedication, or for patients where the standard premedications (ie, dexamethasone, H2 blockers, H1 blockers) are contraindicated.

**Carboplatin-based regimens are often used for patients with comorbidities or those who cannot tolerate cisplatin.

†Bevacizumab should be given until progression.
‡Any regimen with a high risk of thrombocytopenia and the potential risk of bleeding should be used with caution in combination with bevacizumab.
#Criteria for treatment with bevacizumab: non-squamous NSCLC, and no recent history of hemoptysis. Bevacizumab should not be given as a single agent, unless as maintenance if initially used with chemotherapy.
¶If pembrolizumab not previously given.
Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

*Albumin-bound paclitaxel may be substituted for either paclitaxel or docetaxel in patients who have experienced hypersensitivity reactions after receiving paclitaxel or docetaxel despite premedication, or for patients where the standard premedications (ie, dexamethasone, H2 blockers, H1 blockers) are contraindicated.

**Carboplatin-based regimens are often used for patients with comorbidities or those who cannot tolerate cisplatin.

§Cisplatin/gemcitabine/necitumumab in the first-line setting and afatinib in the second-line setting are not used at NCCN Member Institutions for these indications related to the efficacy and safety of these agents compared to the efficacy and safety of other available agents.
SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE (4 of 4)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Table 1. Definitions for T, N, M

T Primary Tumor	T3 Tumor >5 cm but ≤7 cm in greatest dimension or directly invading any of the following: parietal pleura (PL3), chest wall (including superior sulcus tumors), phrenic nerve, parietal pericardium; or separate tumor nodule(s) in the same lobe as the primary
TX Primary tumor cannot be assessed, or tumor proven by the presence of malignant cells in sputum or bronchial washings but not visualized by imaging or bronchoscopy	T4 Tumor >7 cm or tumor of any size invading one or more of the following: diaphragm, mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve, esophagus, vertebral body, carina; separate tumor nodule(s) in a ipsilateral lobe different from that of the primary
T0 No evidence of primary tumor	
Tis Carcinoma in situ	N Regional Lymph Nodes
Squamous cell carcinoma in situ (SCIS)	N0 No regional lymph node metastasis
Adenocarcinoma in situ (AIS): adenocarcinoma with pure lepidic pattern, ≤3 cm in greatest dimension	N1 Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension
T1 Tumor ≤3 cm in greatest dimension, surrounded by lung or visceral pleura, without bronchoscopic evidence of invasion more proximal than the lobar bronchus (i.e., not in the main bronchus)	N2 Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s)
T1mi Minimally invasive adenocarcinoma: adenocarcinoma (≤3 cm in greatest dimension) with a predominantly lepidic pattern and ≤5 mm invasion in greatest dimension	N3 Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph node(s)
T1a Tumor ≤1 cm in greatest dimension. A superficial, spreading tumor of any size whose invasive component is limited to the bronchial wall and may extend proximal to the main bronchus also is classified as T1a, but these tumors are uncommon.	
T1b Tumor >1 cm but ≤2 cm in greatest dimension	M Distant Metastasis
T1c Tumor >2 cm but ≤3 cm in greatest dimension	M0 No distant metastasis
T2 Tumor >3 cm but ≤5 cm or having any of the following features: (1) Involves the main bronchus, regardless of distance to the carina, but without involvement of the carina; (2) Invades visceral pleura (PL1 or PL2); (3) Associated with atelectasis or obstructive pneumonitis that extends to the hilar region, involving part or all of the lung	M1 Distant metastasis
T2a Tumor >3 cm but ≤4 cm in greatest dimension	M1a Separate tumor nodule(s) in a contralateral lobe; tumor with pleural or pericardial nodules or malignant pleural or pericardial effusiona
T2b Tumor >4 cm but ≤5 cm in greatest dimension	M1b Single extrathoracic metastasis in a single organ (including involvement of a single nonregional node)
aMost pleural (pericardial) effusions with lung cancer are a result of the tumor. In a few patients, however, multiple microscopic examinations of pleural (pericardial) fluid are negative for tumor, and the fluid is nonbloody and not an exudate. If these elements and clinical judgment dictate that the effusion is not related to the tumor, the effusion should be excluded as a staging descriptor.	M1c Multiple extrathoracic metastases in a single organ or in multiple organs

Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original and primary source for this information is the AJCC Cancer Staging Manual, Eighth Edition (2016) published by Springer Science+Business Media, LLC (SBM).
Table 2. AJCC Prognostic Groups

<table>
<thead>
<tr>
<th>Occult Carcinoma</th>
<th>TX</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA1</td>
<td>T1mi</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA2</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA3</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T1a</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1b</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1c</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2a</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2b</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
</tbody>
</table>

Stage IIIA	T1a	N2	M0
	T1b	N2	M0
	T1c	N2	M0
	T2a	N2	M0
	T2b	N2	M0
	T3	N1	M0
	T4	N0	M0
	T4	N1	M0

Stage IIIB	T1a	N3	M0
	T1b	N3	M0
	T1c	N3	M0
	T2a	N3	M0
	T2b	N3	M0
	T3	N2	M0
	T4	N2	M0

| Stage IIIC | T3 | N3 | M0 |
| | T4 | N3 | M0 |

| Stage IVA | Any T| Any N| M1a |
| | Any T| Any N| M1b |

| Stage IVB | Any T| Any N| M1c |

Table 3. Comparison of the Descriptors in the Eighth Edition of the TNM Classification of Lung Cancer Compared with the Seventh Edition*

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>7th Edition T/N/M</th>
<th>8th Edition T/N/M</th>
</tr>
</thead>
<tbody>
<tr>
<td>T component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 cm (pure lepidic adenocarcinoma ≤3 cm in total size)</td>
<td>T1a if ≤2 cm; T1b if >2-3 cm</td>
<td>Tis (AIS)</td>
</tr>
<tr>
<td>≤0.5 cm invasive size (lepidic predominant adenocarcinoma ≤3 cm total size)</td>
<td>T1a if ≤2 cm; T1b if >2-3 cm</td>
<td>T1mi</td>
</tr>
<tr>
<td>≤1 cm</td>
<td>T1a</td>
<td>T1a</td>
</tr>
<tr>
<td>>1-2 cm</td>
<td>T1a</td>
<td>T1b</td>
</tr>
<tr>
<td>>2-3 cm</td>
<td>T1b</td>
<td>T1c</td>
</tr>
<tr>
<td>>3-4 cm</td>
<td>T2a</td>
<td>T2a</td>
</tr>
<tr>
<td>>4-5 cm</td>
<td>T2a</td>
<td>T2b</td>
</tr>
<tr>
<td>>5-7 cm</td>
<td>T2b</td>
<td>T3</td>
</tr>
<tr>
<td>>7 cm</td>
<td>T3</td>
<td>T4</td>
</tr>
<tr>
<td>Bronchus <2 cm from carina</td>
<td>T3</td>
<td>T2</td>
</tr>
<tr>
<td>Total atelectasis/pneumonitis</td>
<td>T3</td>
<td>T2</td>
</tr>
<tr>
<td>Invasion of diaphragm</td>
<td>T3</td>
<td>T4</td>
</tr>
<tr>
<td>Invasion of mediastinal pleura</td>
<td>T3</td>
<td>—</td>
</tr>
<tr>
<td>N component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No assessment, no involvement, or involvement of regional lymph nodes</td>
<td>NX, N0, N1, N2, N3</td>
<td>No change</td>
</tr>
<tr>
<td>M component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis within the thoracic cavity</td>
<td>M1a</td>
<td>M1a</td>
</tr>
<tr>
<td>Single extrathoracic metastasis</td>
<td>M1b</td>
<td>M1b</td>
</tr>
<tr>
<td>Multiple extrathoracic metastasis</td>
<td>M1b</td>
<td>M1c</td>
</tr>
</tbody>
</table>

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

Table of Contents

Overview MS-3
Literature Search Criteria and Guidelines Update Methodology3
Risk Factors ...MS-3
Smoking Cessation ..MS-4
Lung Cancer Screening MS-5
Classification and Prognostic Factors MS-5
Diagnostic Evaluation MS-6
Incidental Lung Nodules MS-6
Larger Tumors MS-7
Pathologic Evaluation of Lung Cancer MS-7
Adenocarcinoma MS-9
Immunohistochemical Staining MS-9
Staging ... MS-10
Predictive and Prognostic Biomarkers MS-11
Broad Molecular Profiling for Biomarkers MS-13
EGFR Mutations ..MS-13
BRAF V600E Mutations MS-15
ALK Gene Rearrangements MS-15
ROS1 Rearrangements MS-17
KRAS Mutations MS-18
PD-L1 Expression Levels MS-18
Treatment Approaches MS-19
Surgery MS-19
Lymph Node Dissection MS-19
Stage IIIA N2 Disease MS-20
Thorascopic Lobectomy MS-21
Radiation Therapy MS-21
General Principles MS-21
<table>
<thead>
<tr>
<th>Target Volumes, Prescription Doses, and Normal Tissue Dose Constraints</th>
<th>MS-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Simulation, Planning, and Delivery</td>
<td>MS-24</td>
</tr>
<tr>
<td>Stereotactic Ablative Radiotherapy</td>
<td>MS-24</td>
</tr>
<tr>
<td>Whole Brain RT and Stereotactic Radiosurgery</td>
<td>MS-25</td>
</tr>
<tr>
<td>Combined Modality Therapy</td>
<td>MS-26</td>
</tr>
<tr>
<td>Surgery Followed by Chemotherapy: Trial Data</td>
<td>MS-27</td>
</tr>
<tr>
<td>Preoperative Chemotherapy Followed by Surgery: Trial Data</td>
<td>MS-28</td>
</tr>
<tr>
<td>Chemoradiation: Trial Data</td>
<td>MS-29</td>
</tr>
<tr>
<td>Chemotherapy: Trial Data</td>
<td>MS-30</td>
</tr>
<tr>
<td>Targeted Therapies</td>
<td>MS-32</td>
</tr>
<tr>
<td>Immunotherapies</td>
<td>MS-41</td>
</tr>
<tr>
<td>Maintenance Therapy</td>
<td>MS-46</td>
</tr>
<tr>
<td>Clinical Evaluation</td>
<td>MS-47</td>
</tr>
<tr>
<td>Additional Pretreatment Evaluation</td>
<td>MS-48</td>
</tr>
<tr>
<td>Initial Therapy</td>
<td>MS-50</td>
</tr>
<tr>
<td>Stage I, Stage II, and Stage IIIA Disease</td>
<td>MS-50</td>
</tr>
<tr>
<td>Multiple Lung Cancers</td>
<td>MS-52</td>
</tr>
<tr>
<td>Stage IIIB Disease</td>
<td>MS-52</td>
</tr>
<tr>
<td>Stage IV Disease</td>
<td>MS-53</td>
</tr>
<tr>
<td>Postoperative Treatment</td>
<td>MS-54</td>
</tr>
<tr>
<td>Chemotherapy or Chemoradiation</td>
<td>MS-54</td>
</tr>
<tr>
<td>Radiation Therapy</td>
<td>MS-56</td>
</tr>
<tr>
<td>Surveillance</td>
<td>MS-56</td>
</tr>
<tr>
<td>Treatment of Recurrences and Distant Metastases</td>
<td>MS-57</td>
</tr>
<tr>
<td>Trial Data</td>
<td>MS-61</td>
</tr>
<tr>
<td>Number of Cycles of First-Line Systemic Therapy</td>
<td>MS-62</td>
</tr>
<tr>
<td>Maintenance Therapy</td>
<td>MS-62</td>
</tr>
<tr>
<td>Continuation of Targeted Therapy After Progression on Initial Therapy</td>
<td>MS-63</td>
</tr>
<tr>
<td>Second-Line and Beyond (Subsequent) Systemic Therapy</td>
<td>MS-64</td>
</tr>
<tr>
<td>Summary</td>
<td>MS-68</td>
</tr>
<tr>
<td>References</td>
<td>MS-69</td>
</tr>
</tbody>
</table>
Overview

Lung cancer is the leading cause of cancer death in the United States. In 2017, an estimated 222,500 new cases (116,990 in men and 105,510 in women) of lung and bronchial cancer will be diagnosed, and 155,870 deaths (84,590 in men and 71,280 in women) are estimated to occur because of the disease. Only 18% of all patients with lung cancer are alive 5 years or more after diagnosis. However, much progress has been made recently for lung cancer such as screening, minimally invasive techniques for diagnosis and treatment, and advances in radiation therapy (RT) including stereotactic ablative radiotherapy (SABR), targeted therapies, and immunotherapies.

Common symptoms of lung cancer include cough, dyspnea, weight loss, and chest pain; patients with symptoms are more likely to have chronic obstructive pulmonary disease (COPD).

The NCCN Guidelines® for Non-Small Cell Lung Cancer (NSCLC) are updated at least once a year by the NCCN Panel; there were 8 updates in 2017. These NCCN Guidelines® were first published in 1996. The Summary of the Guidelines Updates describes the most recent revisions to the algorithms, which have been incorporated into this updated Discussion text (see the NCCN Guidelines for NSCLC and Summary in this Discussion). It is important to note that all recommendations are category 2A in the NCCN Guidelines unless otherwise indicated. Category 2A recommendations are based on lower level evidence (such as phase 2 trials) and uniform NCCN consensus (at least 85% of panel members) that the intervention is appropriate. By definition, the NCCN Guidelines cannot incorporate all possible clinical variations and are not intended to replace good clinical judgment or individualization of treatments.

Risk Factors

The primary risk factor for lung cancer is smoking tobacco, which accounts for most lung cancer-related deaths. Cigarette smoke contains many carcinogenic chemicals (eg, nitrosamines, benzo(a)pyrene diol epoxide). The risk for lung cancer increases with the number of packs of cigarettes smoked per day and with the number of years spent smoking (ie, pack-years of smoking history). Exposed nonsmokers also have an increased relative risk (RR = 1.24).

Literature Search Criteria and Guidelines Update Methodology

Before the update of this version of the NCCN Guidelines for NSCLC, an electronic search of the PubMed database was performed to obtain key literature in NSCLC using the following search term: non-small cell lung cancer. The PubMed database was chosen because it is the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase 2; Clinical Trial, Phase 3; Clinical Trial, Phase 4; Guideline; Meta-Analysis; Randomized Controlled Trial; Systematic Reviews; and Validation Studies.

The data from key PubMed articles selected by the NCCN Panel for review during the NCCN Guidelines update meeting, as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the NCCN Panel, have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). If high-level evidence is lacking, recommendations are based on the panel's review of lower-level evidence and expert opinion. The complete details of the development and update of the NCCN Guidelines are available on the NCCN webpage (www.NCCN.org).
of developing lung cancer from secondhand smoke; other studies have reported a modest risk (hazard ratio [HR], 1.05).11,15-18

Other possible risk factors for lung cancer include disease history (eg, COPD), cancer history, family history of lung cancer, and exposure to other carcinogens (see the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).19,20 The International Agency for Research on Cancer lists several agents known to cause lung cancer, including arsenic, chromium, asbestos, nickel, cadmium, beryllium, silica, and diesel fumes.21-23 Asbestos is a known carcinogen that increases the risk for lung cancer in people exposed to airborne fibers, especially in individuals who smoke. It is estimated that about 3% to 4% of lung cancers are caused by asbestos exposure.24 Asbestos also causes malignant pleural mesothelioma (see the NCCN Guidelines for Malignant Pleural Mesothelioma, available at www.NCCN.org). Radon gas, a radioactive gas that is produced by the decay of radium 226, also seems to cause lung cancer.

It is not clear whether hormone replacement therapy (HRT) affects the risk for lung cancer in women. More than 20 studies have been published, but the results have been inconsistent. In a large randomized controlled study,25 no increase in the incidence of lung cancer was found among postmenopausal women treated with estrogen plus progestin HRT; however, the risk of death from NSCLC increased.25 In women who received estrogen alone, the incidence or risk of death from lung cancer did not increase.26

Smoking Cessation

Approximately 85% to 90% of cases of lung cancer are caused by cigarette smoking.12 Active smoking and secondhand smoke both cause lung cancer. There is a causal relationship between active smoking and lung cancer and also between other cancers (eg, esophageal, oral cavity, laryngeal, pharyngeal, bladder, pancreatic, gastric, kidney, ovarian cancer, colorectal, and cervical cancers) and other diseases and conditions.12 Smoking harms nearly every organ in the body; smokers have increased mortality compared with nonsmokers.27 Those who live with someone who smokes have an increased risk for lung cancer.16 Further complicating this problem, cigarettes also contain nicotine, which is a highly addictive substance.

Oncologists should encourage smoking cessation, especially in patients with cancer (see the NCCN Guidelines for Smoking Cessation, available at www.NCCN.org).28-31 The 5 A’s framework is a useful tool (that is, Ask, Advise, Assess, Assist, Arrange).32 It is in the best interest of patients to quit smoking. Persistent smoking is associated with second primary cancers, treatment complications, and decreased survival.33 Some surgeons will not operate on a current smoker, because active smoking may increase postoperative pulmonary complications.34 However, active smoking should not be used to exclude patients with early-stage lung cancer from surgical treatment that will prolong survival. Programs using behavioral counseling combined with medications that promote smoking cessation (approved by the FDA) can be very useful.35 The American Cancer Society (ACS) has a Guide to Quitting Smoking.

Agents that can be used to promote smoking cessation include nicotine replacement (eg, gum, inhaler, lozenge, nasal spray, patch), bupropion sustained release, and varenicline.36,37 A study suggests that cytisine is more efficacious than nicotine replacement therapy, although more side effects were reported with cytisine such as nausea, vomiting, and sleep disorders.38 Studies have shown that varenicline is better than bupropion or nicotine patch for smoking cessation.39-41 The effectiveness of varenicline for preventing relapse has not been clearly established.42 The FDA has issued an alert for varenicline regarding neuropsychiatric
symptoms. Varenicline has also been associated with visual disturbances, movement disorders, unconsciousness, and cardiovascular disorders; therefore, it is banned in truck and bus drivers, pilots, and air traffic controllers.43-46 Other side effects with varenicline include nausea, abnormal dreams, insomnia, and headache.41,47,48 Bupropion may also be associated with similar serious neuropsychiatric symptoms. Nicotine replacement has fewer adverse effects than varenicline or bupropion.49 In spite of the potential adverse effects, it is probably more beneficial for motivated patients to use agents to promote smoking cessation.49

Lung Cancer Screening
Lung cancer is the leading cause of cancer death worldwide in men, and late diagnosis is a major obstacle to improving lung cancer outcomes.1,50,51 Because localized cancer can be managed with curative intent and because the mortality rate in other solid tumors (eg, cervix, colon) seems to be decreased by screening and early detection, lung cancer is an appropriate candidate for a population-based screening approach.

The National Lung Screening Trial (NLST) (ACRIN Protocol A6654) was a randomized controlled study involving more than 53,000 current or former heavy smokers that assessed the risks and benefits of low-dose CT scans compared with chest radiographs for detecting lung cancer.52 Data from the NLST showed that screening individuals with high-risk factors using low-dose CT decreased the mortality rate from lung cancer by 20%.53 Individuals with high-risk factors were either current or former smokers with a 30 or more pack-year smoking history (former smokers had quit up to 15 years before enrollment), were 55 to 74 years of age, and had no evidence of lung cancer.52,54 The NCCN, ACS, U.S. Preventive Services Task Force (USPSTF), American College of Chest Physicians, European Society for Medical Oncology (ESMO), and other organizations recommend lung cancer screening using low-dose CT for select high-risk current and former smokers (see the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).55-58 Low-dose CT screening and follow-up are not a substitute for smoking cessation; patients should be offered smoking cessation counseling (see NCCN Guidelines for Smoking Cessation, available at www.NCCN.org).

Classification and Prognostic Factors
WHO divides lung cancer into 2 major classes based on its biology, therapy, and prognosis: NSCLC (discussed in these guidelines) and small cell lung cancer (SCLC) (see the NCCN Guidelines for Small Cell Lung Cancer, available at www.NCCN.org).59,60 NSCLC accounts for more than 80% of all lung cancer cases, and it includes 2 major types: 1) nonsquamous carcinoma (including adenocarcinoma, large-cell carcinoma, and other subtypes); and 2) squamous cell (epidermoid) carcinoma.1 Adenocarcinoma is the most common subtype of lung cancer seen in the United States and is also the most frequently occurring histology in nonsmokers. In 2011, an international panel revised the classification of lung adenocarcinoma (see the Pathologic Evaluation of Lung Cancer in this Discussion), which has been adopted by WHO.59,61 All NSCLC should be classified according to subtype using the WHO Guidelines.60 For the 2018 update (Version 1), the NCCN Panel extensively revised the pathology section (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC and Pathologic Evaluation of Lung Cancer in this Discussion). Some of the changes include the addition of information about adenosquamous carcinomas, large cell carcinomas, and carcinoid tumors. Certain prognostic factors are predictive of survival in patients with NSCLC. Good prognostic factors include early-stage disease at diagnosis, good
performance status (PS) (ECOG 0, 1), no significant weight loss (not more than 5%), and female gender.

Diagnostic Evaluation

Incidental Lung Nodules

Lung cancer screening is recommended for early diagnosis in asymptomatic patients at high risk. Risk assessment is used to determine which individuals are at high risk for lung cancer and thus are candidates for screening with low-dose CT. Clinicians are referred to the NCCN Guidelines for Lung Cancer Screening for risk assessment criteria to determine which patients are eligible for screening and for how to evaluate and follow up on low-dose CT screening findings. The NCCN Guidelines for Lung Cancer Screening were recently revised to harmonize with the LungRADs system developed by the American College of Radiology with the goal of decreasing the false-positive low-dose CT screening results reported in the NLST.

The diagnostic algorithm for pulmonary nodules in the NCCN Guidelines for NSCLC incorporates information from the NCCN Guidelines for Lung Cancer Screening. For the 2018 update (Version 1), the NCCN Panel revised the diagnostic algorithms for incidental solid and subsolid lung nodules detected on chest CT based on the updated Fleischner criteria (see the NCCN Guidelines for NSCLC). The cutoff thresholds have been increased to 6 mm for a positive scan result. Note that the Fleischner Society Guidelines do not specify whether a CT with contrast is necessary for follow-up or whether a low-dose CT is sufficient. Low-dose CT is preferred unless contrast enhancement is needed for better diagnostic resolution.

Solid and subsolid nodules are the 2 main types of pulmonary nodules that may be seen on chest CT scans. The Fleischner Society has recommendations for patients with solid and subsolid nodules. Subsolid nodules include 1) nonsolid nodules also known as ground-glass opacities (GGOs) or ground-glass nodules (GGNs); and 2) part-solid nodules, which contain both ground-glass and solid components. Nonsolid nodules are mainly adenocarcinoma in situ (AIS) or minimally invasive adenocarcinoma (MIA), formerly known as bronchioloalveolar carcinoma (BAC) (see Adenocarcinoma in this Discussion); patients have 5-year disease-free survival of 100% if these nonsolid nodules are completely resected.

Data suggest that many nonsolid nodules discovered incidentally on CT imaging will resolve and many of those that persist may not progress to clinically significant cancer. Solid and part-solid nodules are more likely to be invasive, faster-growing cancers, factors that are reflected in the increased suspicion and follow-up of these nodules (see the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).

All findings and factors for a patient need to be carefully evaluated in a multidisciplinary diagnostic team before establishing a diagnosis of lung cancer and before starting treatment. The NCCN Guidelines recommend biopsy or surgical excision for highly suspicious nodules seen on low-dose CT scans or further surveillance for nodules with a low suspicion of cancer depending on the type of nodule and a multidisciplinary evaluation of other patient factors (see the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).

For patients having repeat scans, the most important radiologic factor is change or stability of a nodule when compared with a previous imaging study. False-positive results (eg, benign intrapulmonary lymph nodes, noncalcified granulomas) frequently occurred with low-dose CT when using the original cutoffs for nodule size deemed suspicious for malignancy from the NLST. The revised cutoff values for suspicious...
nodules recommended by the American College of Radiology and incorporated into the LungRADs system have been reported to decrease the false-positive rate from low-dose CT.79-81

Larger Tumors

The NCCN Guidelines recommend that the diagnostic strategy should be individualized for each patient depending on the size and location of the tumor, the presence of mediastinal or distant disease, patient characteristics (eg, comorbidities), and local expertise. The diagnostic strategy needs to be decided in a multidisciplinary setting. Decisions regarding whether a biopsy (including what type of biopsy) or surgical excision is appropriate depend on several factors as outlined in the NSCLC algorithm (see Principles of Diagnostic Evaluation in the NCCN Guidelines for NSCLC). For example, a preoperative biopsy may be appropriate if an intraoperative diagnosis seems to be difficult or very risky. The preferred biopsy technique depends on the site of disease and is described in the NSCLC algorithm (see Principles of Diagnostic Evaluation). For example, radial endobronchial ultrasound (EBUS; also known as endosonography), navigational bronchoscopy, or transthoracic needle aspiration (TTNA) are recommended for patients with suspected peripheral nodules.82 PET/CT imaging is useful before selecting a biopsy site, because it is better to biopsy the site that will confer the highest stage. For patients with suspected nodal disease, pathologic mediastinal lymph node evaluation is recommended with either noninvasive or invasive staging methods including endoscopic ultrasound–guided fine-needle aspiration (EUS-FNA), EBUS–guided transbronchial needle aspiration (EBUS-TBNA), navigational bronchoscopy, or mediastinoscopy (see Mediastinal Lymph Node Evaluation in this Discussion and Principles of Diagnostic Evaluation in the NCCN Guidelines for NSCLC). Clinicians use both noninvasive and invasive methods when staging patients.83 EBUS provides access to nodal stations 2R/2L, 4R/4L, 7, 10R/10L, and other hilar nodal stations. EUS provides access to nodal stations 5, 7, 8, and 9.

If pathology results from biopsy or surgical excision indicate a diagnosis of NSCLC, then further evaluation and staging need to be done so that the patient’s health care team can determine the most appropriate and effective treatment plan (see Pathologic Evaluation of Lung Cancer and Staging in this Discussion and the NCCN Guidelines for NSCLC). Diagnosis, staging, and planned resection (eg, lobectomy) are ideally one operative procedure for patients with early-stage disease (see the Principles of Diagnostic Evaluation in the NCCN Guidelines for NSCLC). A preoperative or intraoperative tissue diagnosis of lung cancer should be established before doing a lobectomy.

Pathologic Evaluation of Lung Cancer

Pathologic evaluation is performed to classify the histologic subtype of the lung cancer, determine the extent of invasion, determine whether it is primary lung cancer or metastatic cancer, establish the cancer involvement status of the surgical margins (ie, positive or negative margins), and do molecular diagnostic studies to determine whether certain gene alterations are present (eg, epidermal growth factor receptor [EGFR] mutations) (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC).84 Data show that targeted therapy is potentially very effective in patients with specific gene mutations or rearrangements; therefore, tissue needs to be conserved for molecular testing (see EGFR Mutations, BRAF V600E Mutations, ALK Gene Rearrangements, and ROS1 Rearrangements in this Discussion).6,85-91

Preoperative evaluations include examination of the following: bronchial brushings, bronchial washings, sputum, FNA biopsy, core needle biopsy, endobronchial biopsy, and transbronchial biopsy.82,92 Minimally invasive techniques can be used to obtain specimens in patients with
advanced unresectable NSCLC; however, diagnosis may be more difficult when using small biopsies and cytology. The mediastinal lymph nodes are systematically sampled to determine the staging and therapeutic options. Other lung diseases also need to be ruled out (eg, tuberculosis, sarcoidosis, coccidioidomycosis). Lobectomy or pneumonectomy specimens are evaluated intraoperatively to determine the surgical resection margin status, diagnose incidental nodules discovered at the time of surgery, or evaluate the regional lymph nodes.

Postoperative evaluation provides the pathology characteristics necessary for the classification of tumor type, staging, and prognostic factors. The surgical pathology report should include the WHO histologic classification for carcinomas of the lung. In 2011, the classification for lung adenocarcinoma was revised by an international panel, which has been adopted by the WHO (see Adenocarcinoma in this Discussion). The revised classification recommends immunohistochemical (IHC) and molecular studies (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC). In addition, the revised classification recommends that use of general categories (eg, non-small cell carcinoma [NSCC], NSCC not otherwise specified [NOS]) should be minimized, because more effective treatment can be selected when the histology is known.

For the 2018 update (Version 1), the NCCN Panel extensively revised the pathology section in the algorithm including new information about adenosquamous carcinomas, large cell carcinomas, and carcinoid tumors (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC). The purpose of the pathologic evaluation of NSCLC varies depending on whether the sample is 1) intended for initial diagnosis in a case of suspected NSCLC; 2) a definitive resection sample; or 3) obtained for molecular evaluation in the setting of an established NSCLC diagnosis. Further details are provided in the algorithm. All NSCLC should be classified according to subtype using the WHO Guidelines. Major subtypes of NSCLC include adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, large cell carcinoma, carcinoid tumor, and less common subtypes that are not discussed here. Ideally, the subtype should be obtained. The general terms NSCC or NSCC NOS should be used infrequently and only when a more specific diagnosis cannot be obtained by morphology and/or special staining.

Adenocarcinomas include AIS, MIA, invasive adenocarcinomas, and invasive adenocarcinoma variants (see Adenocarcinoma in this Discussion and the NCCN Guidelines for NSCLC). Squamous cell carcinoma is a malignant epithelial tumor that 1) shows either keratinization and/or intercellular bridges; or 2) is an undifferentiated NSCC. Adenosquamous carcinomas are tumors with mixed adenocarcinoma and squamous cell carcinoma components; each component comprises at least 10% of the tumor. The presence of any adenocarcinoma component in a biopsy specimen that is otherwise squamous should trigger molecular testing. Large cell carcinomas are tumors lacking morphologic or IHC evidence of clear lineage, with negative or uninformative stains for squamous cell carcinoma and adenocarcinoma. The diagnosis of large cell carcinoma requires a thoroughly sampled resected tumor and cannot be made on non-resected or cytology specimens. Staining for large cell carcinomas should include mucin stain to look for occult glandular differentiation. Although carcinoid tumors are not treated like other types of NSCLC, they are staged in the same manner and are part of the differential diagnosis of pulmonary lesions. Care should be taken to properly distinguish typical carcinoid from atypical carcinoid by assessing for necrosis and using a morphologic mitotic count.
Adenocarcinoma

As previously mentioned, most lung carcinomas are adenocarcinomas. In 2011, the classification for lung adenocarcinoma was revised by an international panel and adopted by WHO. The revised classification recommends that use of general categories—NSCC and NSCC NOS—should be minimized, because more effective treatment can be selected when the specific subtype is known; IHC and molecular studies are also recommended (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC).

The categories of BAC or mixed subtype adenocarcinoma are no longer used to classify adenocarcinoma. If necessary, former BAC can be used. The categories for adenocarcinoma include: 1) AIS (formerly BAC), which is a preinvasive, typically solitary lesion that is usually non-mucinous; 2) MIA, which is a solitary and discrete non-mucinous lesion; 3) invasive adenocarcinoma (includes formerly nonmucinous BAC); and 4) variants of invasive adenocarcinoma (includes formerly mucinous BAC) (see the NCCN Guidelines for NSCLC). Both AIS and MIA are associated with excellent survival if they are resected. The terms AIS, MIA, and large cell carcinoma should not be used for small samples because of challenges with cytology specimens.

The international panel and the NCCN Panel recommend that all patients with adenocarcinoma be tested for EGFR mutations; the NCCN Panel also recommends that patients receive routine comprehensive testing for anaplastic lymphoma kinase (ALK) gene rearrangements, ROS1 rearrangements, BRAF mutations, and programmed death (PD-1) receptor expression levels, because FDA-approved agents for lung cancer are available for these biomarkers. BRAF mutation testing is now included in a recommended routine comprehensive set of biomarkers based on the FDA approval of dabrafenib/trametinib for patients with metastatic NSCLC who have the BRAF V600E mutation (see BRAF V600E Mutations and Dabrafenib and Trametinib in this Discussion). The panel also advises testing for other genetic alterations, such as RET rearrangements, to identify rare oncogenic driver alterations for which effective therapy may be available (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC).

Immunohistochemical Staining

For the 2018 update (Version 1), the IHC section was revised in the NSCLC algorithm (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC). Judicious use of IHC in small tissue samples is strongly recommended to conserve tumor tissue for molecular studies, especially in patients with advanced disease. Note that IHC analyses used to identify tumor type and lineage (eg, adenocarcinoma vs. squamous cell carcinoma) are distinct from IHC analyses used to determine whether patients are candidates for ALK inhibitor therapy or PD-L1 inhibitor therapy. Before using IHC, all findings should be assessed including routine hematoxylin and eosin (H&E) histology, clinical findings, imaging studies, and the patient’s history. Cytology may be sufficient to distinguish adenocarcinomas from squamous cell carcinomas. If necessary, IHC should be used to distinguish adenocarcinoma, squamous cell carcinoma, large cell carcinoma, metastatic malignancy, and primary pleural mesothelioma (particularly for pleural samplings). IHC is useful for poorly differentiated NSCLC in small biopsy and/or cytology specimens. Squamous cell carcinomas are often TTF-1 negative and p63 positive, whereas adenocarcinomas are usually TTF-1 positive. These 2 markers may be sufficient to distinguish adenocarcinomas from squamous cell carcinomas. Other markers (eg, p40, Napsin A) may also be useful in distinguishing adenocarcinoma from squamous cell carcinoma. Napsin A occurs
in more than 80% of lung adenocarcinomas. In small biopsy specimens previously classified as NSCC NOS, a panel of TTF-1 (or alternatively napsin A) and p40 (or alternatively p63) may be sufficient to refine the diagnosis to either adenocarcinoma or squamous cell carcinoma. Note that p63 can co-stain with TTF-1 or Napsin A in adenocarcinoma.

An appropriate panel of IHC stains should include metastatic carcinomas to the lung if the primary origin of the carcinoma is uncertain. TTF-1 is very important for distinguishing primary lung adenocarcinoma from metastatic adenocarcinoma, because most (70%–90%) non-mucinous primary adenocarcinomas are TTF-1 positive. TTF-1 is typically negative for squamous cell carcinoma. However, TTF-1 is positive in tumors from patients with thyroid cancer and rarely in a few other organ systems. In addition, thyroglobulin and PAX8 are positive in tumors from patients with thyroid cancer, while they are negative in lung cancer tumors. Immunomarkers that may be useful to assess for metastatic carcinoma to the lung include breast carcinoma (GCDFP-15, mammaglobin), renal cell carcinoma (PAX8), papillary serous carcinoma (PAX8, PAX2, ER), and adenocarcinomas of the gastrointestinal tract (CDX2) or prostate gland (NKX3.1). All typical and atypical carcinoid tumors are positive for chromogranin and synaptophysin, whereas SCLC is negative in 25% of cases.

Malignant pleural mesothelioma is a rare disease. The NCCN Panel feels that malignant mesothelioma and lung adenocarcinoma can be distinguished using clinical impression, imaging, and a limited panel of immunomarkers (if needed) to preserve tissue for molecular testing. Commonly used immunostains sensitive and specific for adenocarcinoma include pCEA, Claudin4, TTF-1, and Napsin A (negative in mesothelioma). Other potentially useful markers include B72.3, Ber-EP4, MOC31, and CD15; however, these markers generally do not have the sensitivity and specificity of the commonly used markers. Immunostains sensitive and specific for mesothelioma include WT-1, calretinin, cytokeratin 5/6, and D2-40 (podoplanin antibody) (negative in adenocarcinoma). Broad epithelial markers such as keratin(s), as well as other lineage-specific markers, should be used when the differential diagnosis includes non-pulmonary and non-mesothelial lesions. Other markers can be useful in the differential diagnosis between mesothelioma and metastatic carcinoma to the lung (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC).

Although the cytologic diagnosis of NSCLC is generally reliable, it is more difficult to diagnose SCLC. Many patients with SCLC have characteristic CT and clinical findings (eg, massive lymphadenopathy, mediastinal invasion). Most SCLCs are immunoreactive for TTF-1; they are typically negative for CK34βE12 and p63. Many SCLCs also stain positively for markers of neuroendocrine differentiation, including chromogranin and synaptophysin. IHC should be used to confirm neuroendocrine differentiation only when appropriate morphologic features—speckled chromatin pattern, nuclear molding, and peripheral palisading—are present. NCAM (CD56), chromogranin, and synaptophysin are used to identify neuroendocrine tumors if morphologic suspicion of neuroendocrine differentiation exists. One positive marker is sufficient if the staining is not ambiguous in more than 10% of the tumor cells.

Staging

A new edition of the AJCC Cancer Staging Manual (8th edition) was published in late 2016 and will be effective for all cancer cases recorded on or after January 1, 2018. The NCCN Guidelines will use the AJCC (7th edition) staging system for lung cancer until January 1, 2018. The definitions for TNM and the stage grouping for the eighth
edition are summarized in Tables 1 and 2 of the staging tables (see Definitions for T,N,M and Staging in the NCCN Guidelines for NSCLC). The descriptors of the TNM classification scheme are summarized in Table 3 of the staging tables, which shows the differences between the seventh and eighth editions (see Staging). The lung cancer staging system was revised by the International Association for the Study of Lung Cancer (IASLC) and was adopted by the AJCC. With the AJCC staging, locally advanced disease is stage III; advanced disease is stage IV. Pathologic staging uses both clinical staging information (which is noninvasive and includes medical history, physical examination, and imaging) and other invasive staging procedures (eg, thoracotomy, examination of lymph nodes using mediastinoscopy).

From 2007 to 2013, the overall 5-year relative survival rate for NSCLC was 23.6% in the United States. Of NSCLC and bronchial cancer cases, 19% were diagnosed while the cancer was still confined to the primary site; 24% were diagnosed after the cancer had spread to regional lymph nodes or directly beyond the primary site; 55% were diagnosed after the cancer had already metastasized; and for the remaining 2% the staging information was unknown. The corresponding 5-year relative survival rates were 59.5% for localized, 32.3% for regional, 5.2% for distant, and 13.4% for unstaged.

Five-year survival after lobectomy for pathologic stage I NSCLC ranges from 45% to 65%, depending on whether the patient has stage 1A or 1B disease and on the location of the tumor. Another study in patients with stage I disease (n = 19,702) found that 82% had surgical resection and their 5-year overall survival was 54%; for untreated stage I NSCLC, 5-year overall survival was only 6%. Of patients with stage I disease who refused surgery (although it was recommended), 78% died of lung cancer within 5 years.

Predictive and Prognostic Biomarkers

Several biomarkers have emerged as predictive and prognostic markers for NSCLC. A predictive biomarker is indicative of therapeutic efficacy, because there is an interaction between the biomarker and therapy on patient outcome. A prognostic biomarker is indicative of patient survival independent of the treatment received, because the biomarker is an indicator of the innate tumor aggressiveness (see KRAS Mutations at the end of this section). For the 2018 update (Version 1), a new section on biomarkers was added to the algorithm (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC).

Predictive biomarkers include the ALK fusion oncogene (fusion between ALK and other genes [eg, echinoderm microtubule-associated protein-like 4]), ROS1 gene rearrangements, sensitizing EGFR gene mutations, BRAF V600E point mutations, and PD-1 ligand (PD-L1) (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Emerging biomarkers include HER2 (also known as ERBB2) mutations, RET gene rearrangements, and high-level MET amplifications or MET exon 14 skipping mutations (METex14) (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC). The presence of EGFR exon 19 deletions or exon 21 L858R mutations is predictive of treatment benefit from EGFR tyrosine kinase inhibitor (EGFR TKI) therapy (eg, erlotinib); therefore, these mutations are referred to as sensitizing EGFR mutations (see EGFR Mutations in this Discussion).

ALK fusion oncogenes (ie, ALK gene rearrangements) and ROS1 rearrangements are predictive biomarkers that have been identified in a
small subset of patients with NSCLC; both predict for benefit from targeted therapy such as crizotinib or ceritinib (see ALK Gene Rearrangements and ROS1 Rearrangements in this Discussion and Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Other gene rearrangements (ie, gene fusions) have recently been identified (such as RET that are susceptible to targeted therapies (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC). SD-133

Testing for ALK gene rearrangements and EGFR gene mutations is recommended (category 1 for both) in the NSCLC algorithm for patients with nonsquamous NSCLC or NSCLC NOS so that patients with these genetic abnormalities can receive effective treatment with targeted agents such as alectinib or erlotinib (see Targeted Therapies in this Discussion and the NCCN Guidelines for NSCLC). Testing for ROS1 rearrangements and BRAF mutations (both are category 2A) is also recommended in the NCCN Guidelines for nonsquamous NSCLC or NSCLC NOS. Although rare, patients with ALK rearrangements or EGFR mutations can have mixed squamous cell histology. Therefore, testing for ALK rearrangements and EGFR mutations can be considered in select patients with squamous cell histology if they are never smokers, small biopsy specimens were used for testing, or mixed histology was reported. Data suggest that EGFR mutations can occur in patients with adenocarcinoma, which is harder to discriminate from squamous cell carcinoma in small specimens. Thus, testing for EGFR mutations and ALK rearrangements is recommended in mixed squamous cell lung specimens that contain an adenocarcinoma component, such as adenocarcinoma NSCLC. The incidence of EGFR mutations is very low in patients with pure squamous cell histology (<4%).

EGFR, KRAS, ROS1, and ALK genetic alterations do not usually overlap; thus, KRAS mutations may identify patients who will not benefit from molecular testing. BRAF mutations typically do not overlap with EGFR mutations or ALK rearrangements. For patients with metastatic NSCLC, the NCCN Panel currently recommends that the following biomarkers should be tested, including EGFR mutations, BRAF mutations, ALK rearrangements, ROS1 rearrangements, and PD-L1 expression levels. This list of recommended biomarkers may be revised as new oncogenic driver alterations are identified and new agents are approved. Patients with NSCLC may have other genetic alterations (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC).

Other driver mutations and gene rearrangements (ie, driver events) are being identified such as RET gene rearrangements, high-level MET amplification or METex14 mutations, and HER2 (also known as ERBB2) mutations. Targeted agents are available for patients with NSCLC who have these other genetic alterations, although they are FDA approved for other indications (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC). Thus, the NCCN Panel strongly advises broader molecular profiling (also known as precision medicine) to identify rare driver mutations to ensure that patients receive the most appropriate treatment; patients may be eligible for clinical trials for some of these targeted agents. Several online resources are available that describe NSCLC driver events such as DIRECT (DNA-mutation Inventory to Refine and Enhance Cancer Treatment) and My Cancer Genome. The KRAS oncogene is a prognostic biomarker. The presence of KRAS mutations is prognostic of poor survival for patients with NSCLC when compared to the absence of KRAS mutations, independent of therapy (see KRAS Mutations in this Discussion).
KRAS mutations are also predictive of lack of benefit from EGFR TKI therapy. EGFR, KRAS, ROS1, and ALK genetic alterations do not usually overlap. BRAF mutations typically do not overlap with EGFR mutations or ALK rearrangements. Sensitizing EGFR TKI therapy is not effective in patients with KRAS mutations, BRAF V600E mutations, ALK gene rearrangements, or ROS1 rearrangements.

Broad Molecular Profiling for Biomarkers

Broad molecular profiling systems are used to test for multiple genomic alterations (ie, biomarkers) associated with oncogenic driver events and for which targeted therapies are available. The various methods of testing for the different biomarkers are described in the algorithm (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Mutation screening assays for detecting multiple biomarkers simultaneously can detect more than 50 point mutations (eg, Sequenom’s MassARRAY® system, SNaPshot® Multiplex System). These multiplex polymerase chain reaction (PCR) systems do not detect gene rearrangements, because they are not point mutations. ROS1 and ALK gene rearrangements can be detected using fluorescence in situ hybridization (FISH) (see ALK Gene Rearrangements and ROS1 Rearrangements in this Discussion and Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Next-generation sequencing (NGS) (also known as massively parallel sequencing) can detect panels of mutations and gene rearrangements if the NGS platforms have been designed and validated to detect these genetic alterations. It is important to recognize that NGS requires quality control as much as any other diagnostic technique; because it is primer dependent, the panel of genes and abnormalities detected with NGS will vary depending on the design of the NGS platform. For example, some NGS platforms can detect both mutations and gene rearrangements, as well as copy number variation, but they are not uniformly present in all NGS assays being conducted either commercially or in institutional laboratories. To minimize wasting of tissue, the NCCN Panel recommends that biomarker testing be done as part of broad molecular profiling using a validated test(s) that assesses a minimum of the following potential genetic alterations: EGFR mutations, BRAF mutations, ALK rearrangements, and ROS1 rearrangements.

EGFR Mutations

In patients with NSCLC, the most commonly found EGFR gene mutations are deletions in exon 19 (Exon19del [with conserved deletion of the LREA sequence] in 45% of patients with EGFR mutations) and a point mutation in exon 21 (L858R in 40%). Both mutations result in activation of the tyrosine kinase domain, and both are associated with sensitivity to the small molecule EGFR TKIs, such as erlotinib, gefitinib, afatinib, and osimertinib (see Targeted Therapies in this Discussion). Thus, these mutations are referred to as sensitizing EGFR mutations. Other less common mutations (10%) that are also sensitive to EGFR TKIs include exon 19 insertions, p.L861Q, p.G719X, and p.S768I (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Data suggest that patients without sensitizing EGFR mutations should not be treated with EGFR TKIs in any line of therapy. These sensitizing EGFR mutations are found in approximately 10% of Caucasian patients with NSCLC and up to 50% of Asian patients.
Most patients with sensitizing EGFR mutations are nonsmokers or former light smokers with adenocarcinoma histology. However, smoking status, ethnicity, and histology should not be used in selecting patients for testing. EGFR mutation testing is not usually recommended in patients with pure squamous cell carcinoma unless they never smoked, if only a small biopsy specimen (i.e., not a surgical resection) was used to assess histology, or if the histology is mixed. Data suggest that EGFR mutations can occur in patients with adenosquamous carcinoma, which is harder to discriminate from squamous cell carcinoma in small specimens.

The predictive effects of the drug-sensitive EGFR mutations are well defined. Patients with these mutations have a significantly better response to erlotinib, gefitinib, afatinib, or osimertinib. Primary resistance to EGFR TKI therapy is associated with KRAS mutations and ALK or ROS1 gene rearrangements. Patients with EGFR exon 20 insertion mutations are usually resistant to TKIs, although there are rare exceptions (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC).

EGFR p.Thr790Met (T790M) is a mutation associated with acquired resistance to EGFR TKI therapy and has been reported in about 60% of patients with disease progression after initial response to erlotinib, gefitinib, or afatinib. Most patients with sensitizing EGFR mutations become resistant to erlotinib, gefitinib, or afatinib; progression-free survival (PFS) is about 9.7 to 13 months. Studies suggest T790M may also occur in patients who have not previously received erlotinib, gefitinib, or afatinib, although this is a rare event. Genetic counseling is recommended for patients with germline p.T790M as this is associated with predisposition to familial lung cancer. Osimertinib is recommended (category 1) as second-line and beyond (subsequent) therapy for patients with EGFR T790M who have progressed on erlotinib, gefitinib, or afatinib (see Osimertinib in this Discussion). Acquired resistance may also be associated with histologic transformation from NSCLC to SCLC and with epithelial to mesenchymal transition.

DNA mutational analysis is the preferred method to assess for EGFR status; IHC is not recommended for detecting EGFR mutations. Real-time PCR, Sanger sequencing (paired with tumor enrichment), and NGS are the most commonly used methods to assess EGFR mutation status (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Direct sequencing of DNA corresponding to exons 18 to 21 (or just testing for exons 19 and 21) is a reasonable approach; however, more sensitive methods are available. Mutation screening assays using multiplex PCR (e.g., Sequenom’s MassARRAY® system, SNaPshot® Multiplex System) can detect more than 50 point mutations. NGS can also be used to detect EGFR mutations.

The predictive effects of the drug-sensitive EGFR mutations—Exon19del (LREA deletion) and L858R—are well defined. Patients with these mutations have a significantly better response to erlotinib, gefitinib, or afatinib. Data show that EGFR TKI therapy should be used as first-line systemic therapy in patients with advanced NSCLC and sensitizing EGFR mutations documented before first-line therapy (see Targeted Therapies in this Discussion). PFS is improved with use of EGFR TKI in patients with sensitizing EGFR mutations when compared with cytotoxic systemic therapy, although overall survival is not statistically different. Patients receiving erlotinib have fewer treatment-related severe side effects and deaths when compared with those receiving chemotherapy. A phase 4 trial showed that gefitinib is safe and effective in patients with sensitizing EGFR mutations.
Based on these data and the FDA approvals, erlotinib and gefitinib are recommended (category 1) as first-line systemic therapy in patients with sensitizing EGFR mutations. In a phase 3 randomized trial, patients receiving afatinib had decreased cough, decreased dyspnea, and improved health-related quality of life when compared with those receiving cisplatin/pemetrexed. Based on these data and the FDA approval, afatinib is also recommended (category 1) as first-line systemic therapy in patients with sensitizing EGFR mutations. Afatinib was potentially associated with 4 treatment-related deaths, whereas there were none in the chemotherapy group. A combined analysis (LUX 3 and LUX 6) reported a survival advantage in patients with exon 19 deletions who received afatinib when compared with chemotherapy.

BRAF V600E Mutations

BRAF (v-Raf murine sarcoma viral oncogene homolog B) is a serine/threonine kinase that is part of the MAP/ERK signaling pathway. BRAF V600E is the most common of the BRAF point mutations; it occurs in 1% to 2% of patients with lung adenocarcinoma. Although other BRAF mutations occur in patients with NSCLC, specific targeted therapy is not available for these other mutations. Patients with BRAF V600E mutations are typically current or former smokers in contrast to those with EGFR mutations or ALK rearrangements who are typically nonsmokers. Mutations in BRAF typically do not overlap with EGFR mutations or ALK rearrangements. Testing for BRAF mutations is recommended (category 2A) in patients with nonsquamous NSCLC and may be considered in patients with squamous cell NSCLC. Real-time PCR, Sanger sequencing, and NGS are the most commonly used methods to assess for BRAF mutations (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC).

The NCCN Panel recommends testing for BRAF mutations based on data showing the efficacy of dabrafenib/trametinib for patients with BRAF V600E mutations and on the FDA approval (see Dabrafenib/Trametinib in this Discussion). Dabrafenib/trametinib or doublet chemotherapy regimens also used for initial cytotoxic therapy (eg, carboplatin/pemetrexed for nonsquamous NSCLC) are recommended for patients with BRAF V600E mutations. Single-agent therapy with dabrafenib or vemurafenib is recommended if combination therapy with dabrafenib/trametinib is not tolerated.

ALK Gene Rearrangements

About 5% of patients with NSCLC have ALK gene rearrangements. Patients with ALK rearrangements are resistant to EGFR TKIs but have similar clinical characteristics to those with EGFR mutations (ie, adenocarcinoma histology, never smokers, light smokers) except they are more likely to be men and may be younger. In these selected populations, about 30% of patients will have ALK rearrangements. ALK rearrangements are not routinely found in patients with squamous cell carcinoma. Although rare, patients with ALK gene rearrangements can have mixed squamous cell histology. It can be challenging to accurately determine histology in small biopsy specimens; thus, patients may have mixed squamous cell histology (or squamous components) instead of pure squamous cell.

The NCCN Panel recommends testing for ALK rearrangements in patients with nonsquamous NSCLC; testing can be considered if small biopsy specimens were used to assess histology, mixed histology was reported, or patients never smoked. The different testing methods for ALK rearrangements are described in the algorithm (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). A molecular diagnostic test (using FISH) has been approved
by the FDA for detecting ALK rearrangements and is a prerequisite before treatment with crizotinib. Rapid prescreening with IHC to assess for ALK rearrangements can be done; if positive, FISH analysis can confirm ALK positivity. An IHC assay for ALK rearrangements has also been approved by the FDA. NGS can also be used to assess whether ALK rearrangements are present, if the platform has been appropriately designed and validated to detect ALK rearrangements.

First-Line Therapy
Alectinib is an oral TKI that inhibits ALK and RET rearrangements but not MET or ROS1 rearrangements. A phase 3 randomized trial (ALEX) assessed first-line therapy with alectinib versus crizotinib in 303 patients with ALK-positive advanced NSCLC including those with asymptomatic CNS disease. Disease progression or death occurred in fewer patients receiving alectinib (41% [62/152]; median follow-up of 18.6 months) when compared with crizotinib (68% [102/151]; median follow-up of 17.6 months). The HR was 0.47 (95% CI, 0.34–0.65; P<.001) for disease progression or death. PFS was significantly increased with alectinib (68.4% [95% CI, 61.0–75.9] versus crizotinib (48.7% [95% CI, 40.4–56.9]). The median PFS was not reached for alectinib (95% CI, 17.7 months—not estimable) when compared with crizotinib at 11.1 months (95% CI, 9.1–13.1). Fewer patients receiving alectinib had CNS progression (12% [18/152]) versus crizotinib (45% [68/151]). Response rates were 83% (126/152) in the alectinib group versus 75% (114/151) in the crizotinib group (P = .09). Patients receiving alectinib had fewer grade 3 to 5 adverse events when compared with crizotinib (41% [63/152] vs. 50% [75/151], respectively) even though patients received alectinib for a longer duration than crizotinib (median, 17.9 vs. 10.7 months). Fewer deaths were reported in the alectinib arm (3.3% [5/152]) compared with the crizotinib arm (4.6% [7/151]); 2 treatment-related deaths were reported in the crizotinib arm and none in the alectinib arm.

Another phase 3 randomized trial (J-ALEX) assessed first-line therapy with alectinib versus crizotinib in 207 Japanese patients with ALK-positive advanced NSCLC. The data showed that median PFS had not yet been reached with alectinib (95% CI, 20.3 months—not estimated) versus 10.2 months (95% CI, 8.2–12.0) with crizotinib (HR, 0.34 [99.7% CI, 0.17–0.71], stratified log-rank P < .0001). Grade 3 or 4 adverse events were less frequent with alectinib (26% [27/103]) when compared with crizotinib (52% [54/104]); adverse events did not lead to death in either group. Fewer patients stopped taking alectinib (9%) because of an adverse event when compared with crizotinib (20%).

The NCCN Panel recommends alectinib as a preferred first-line treatment (category 1) for patients with ALK-positive metastatic NSCLC based on these clinical trials. Two other ALK inhibitors, crizotinib and ceritinib, are also recommended (category 1 for both) by the NCCN Panel as first-line therapy for patients with ALK rearrangements based on clinical trial data and FDA approvals (see Crizotinib and Ceritinib in this Discussion).

Subsequent Therapy
Patients typically progress after first-line therapy with alectinib, crizotinib, or ceritinib; subsequent therapy recommendations are described in the algorithm (see Second-Line and Beyond (Subsequent) Systemic Therapy in this Discussion and the NCCN Guidelines for NSCLC). The phrase subsequent therapy was recently substituted for the terms second-line or beyond systemic therapy, because the line of therapy may vary depending on previous treatment with targeted agents. For patients who progress on first-line crizotinib, subsequent treatment for ALK-positive NSCLC includes alectinib or ceritinib (if not previously given), or brigatinib (see Ceritinib, Alectinib, and Brigatinib in
non-small cell lung cancer

this Discussion and the NCCN Guidelines for NSCLC). For patients who progress on first-line alectinib or ceritinib, subsequent treatment for ALK-positive NSCLC includes the initial cytotoxic chemotherapy regimens that are used for first-line treatment of NSCLC (eg, carboplatin/paclitaxel). Continuing alectinib, crizotinib, or ceritinib may also be appropriate for patients who progress on these agents (see Second-Line and Beyond (Subsequent) Systemic Therapy in this Discussion). ALK or ROS1 rearrangements and sensitizing EGFR mutations are generally mutually exclusive. Thus, EGFR TKI therapy is not recommended as subsequent therapy in patients with ALK or ROS1 rearrangements who relapse on alectinib, crizotinib, or ceritinib (see ALK Positive: Subsequent Therapy in the NCCN Guidelines for NSCLC). Likewise, ceritinib, alectinib, or brigatinib are not recommended for patients with sensitizing EGFR mutations who relapse on EGFR TKI therapy.

Ceritinib is an orally active TKI of ALK, which also inhibits the insulin-like growth factor–1 (IGF-1) receptor but not MET. The NCCN Panel recommends ceritinib for patients with ALK-positive metastatic NSCLC who have progressed on crizotinib or are intolerant to crizotinib based on trial data and FDA approval. An expanded phase 1 trial showed that ceritinib was very active in 122 patients with locally advanced or metastatic NSCLC who have ALK gene rearrangements. The overall response rate to ceritinib was 56% in patients who had previously received crizotinib; the median PFS was 7 months. Based on this study, ceritinib was approved by the FDA for patients with ALK-positive metastatic NSCLC who progress on or are intolerant to ceritinib. The NCCN Panel recommends ceritinib for patients with ALK-positive metastatic NSCLC who have progressed on ceritinib or are intolerant to ceritinib based on the data from Shaw et al and FDA approval. A recent phase 3 trial (ASCEND-5) assessed subsequent therapy with ceritinib versus chemotherapy (with pemetrexed or docetaxel) in patients with advanced ALK-positive NSCLC who had previously received at least 2 or more treatments (including chemotherapy and crizotinib) and had progressed. Patients receiving ceritinib had a significant improvement in median PFS when compared with chemotherapy (5.4 months [95% CI, 4.1–6.9] for ceritinib vs. 1.6 months [1.4–2.8] for chemotherapy; HR, 0.49 [0.3–0.67]; P<.0001). Serious adverse events were reported in 43% (49/115) of patients receiving ceritinib versus 32% (36/113) of those receiving chemotherapy.

Randomized phase 3 trials have compared crizotinib with second-line (ie, subsequent) chemotherapy (PROFILE 1007). Subsequent therapy with crizotinib improved PFS (7.7 vs. 3.0 months; P < .001) and response rate (65% vs. 20%; P < .001) when compared with single-agent therapy (either docetaxel or pemetrexed) in patients with ALK-positive NSCLC who had progressed after first-line chemotherapy. Based on this trial, crizotinib is recommended as subsequent therapy in patients with ALK-positive disease.

ROS1 Rearrangements

Although ROS proto-oncogene 1 (ROS1) is a distinct receptor tyrosine kinase, it is very similar to ALK and members of the insulin receptor family (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). It is estimated that ROS1 gene rearrangements occur in about 1% to 2% of patients with NSCLC; they occur more frequently in younger women with adenocarcinoma who are never smokers and in those who are negative for EGFR mutations, KRAS mutations, and ALK gene rearrangements (also known as triple negative). Crizotinib is very effective for patients with ROS1 rearrangements with response rates of about 70% including complete
In 50 patients, crizotinib yielded a response rate of 66% (95% CI, 51%–79%); the median duration of response was 18 months. The FDA has approved crizotinib for patients with ROS1 rearrangements. For the 2018 update (Version 1), the NCCN Panel added a recommendation for ceritinib (category 2A) as first-line therapy for patients with ROS1 rearrangements (see Ceritinib in this Discussion). However, the NCCN Panel voted that crizotinib is the preferred agent for patients with ROS1 rearrangements based on trial data and the FDA approval (see Crizotinib in this Discussion).

The NCCN Panel recommends ROS1 testing based on data showing the efficacy of crizotinib for patients with ROS1 rearrangements and on the FDA approval (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). Similar to testing for ALK rearrangements, testing for ROS1 rearrangements is also done using FISH. NGS can also be used to assess whether ROS1 rearrangements are present, if the platform has been appropriately designed and validated to detect ROS1 rearrangements. Because a companion diagnostic test has not been approved for ROS1 rearrangements, clinicians should use an appropriately validated test to detect ROS1 rearrangements. Alectinib and ceritinib are not recommended in patients with ROS1 rearrangements whose disease becomes resistant to crizotinib. Studies are ongoing regarding new agents for patients with ROS1 rearrangements whose disease becomes resistant to crizotinib.

KRAS Mutations

KRAS is a G-protein with GTPase activity that is part of the MAP/ERK pathway; point mutations in KRAS typically occur at codon 12. Data suggest that approximately 25% of patients with adenocarcinomas in a North American population have KRAS mutations; KRAS is the most common mutation. KRAS mutation prevalence is associated with cigarette smoking. Patients with KRAS mutations appear to have a shorter survival than patients with wild-type KRAS; therefore, KRAS mutations are prognostic biomarkers. KRAS mutational status is also predictive of lack of therapeutic efficacy with EGFR TKIs; it does not appear to affect chemotherapeutic efficacy. KRAS mutations do not generally overlap with EGFR mutations, ALK rearrangements, or ROS1 rearrangements. Therefore, KRAS testing may identify patients who may not benefit from further molecular testing. Targeted therapy is not currently available for patients with KRAS mutations, although immune checkpoint inhibitors appear to be effective; MEK inhibitors are in clinical trials.

PD-L1 Expression Levels

Human immune-checkpoint–inhibitor antibodies inhibit the PD-1 receptor or PD-L1, which improves antitumor immunity; PD-1 receptors are expressed on activated cytotoxic T cells (see Immunotherapies in this Discussion). Nivolumab and pembrolizumab inhibit PD-1 receptors. Atezolizumab and durvalumab inhibit PD-L1. The NCCN Panel recommends (category 2A) IHC testing for PD-L1 expression before first-line treatment in patients with metastatic NSCLC with negative or unknown test results for EGFR mutations, BRAF V600E mutations, ALK rearrangements, and ROS1 rearrangements. Although it is not an optimal biomarker, PD-L1 expression is currently the best available biomarker to assess whether patients are candidates for pembrolizumab. Testing for PD-L1 is not required for prescribing nivolumab or atezolizumab for subsequent therapy. Regardless of PD-L1 expression levels, immunotherapy appears to be less effective in tumors with an actionable mutation (such as EGFR mutations, ALK rearrangements, and MET mutations) based on data in the second-line setting.
PD-L1 expression is continuously variable and dynamic; thus, a cutoff value for a positive result is artificial. Patients with PD-L1 expression levels just below and just above 50% will probably have similar responses. Unique anti-PD-L1 IHC assays have been developed for each one of the different immune checkpoint inhibitors. The definition of a positive PD-L1 test result varies depending on which biomarker assay is used.

Treatment Approaches

Surgery, RT, and systemic therapy are the 3 modalities most commonly used to treat patients with NSCLC. They can be used either alone or in combination depending on the disease status. In the following sections, the clinical trials are described that have led to the recommended treatments.

Surgery

In general, for patients with stage I or II disease, surgery provides the best chance for cure. Thoracic surgical oncology consultation should be part of the evaluation of any patient being considered for curative local therapy. The overall plan of treatment and the necessary imaging studies should be determined before any nonemergency treatment is initiated. It is essential to determine whether patients can tolerate surgery or whether they are medically inoperable; some patients deemed inoperable may be able to tolerate minimally invasive surgery and/or sublobar resection. Although frailty is an increasingly recognized predictor of surgical and other treatment morbidity, a preferred frailty assessment system has not been established.

The Principles of Surgical Therapy are described in the NSCLC algorithm and are summarized here (see the NCCN Guidelines for NSCLC). Determination of resectability, surgical staging, and pulmonary resection should be performed by board-certified thoracic surgeons who should participate in multidisciplinary clinics and/or tumor boards for patients with lung cancer. Surgery may be appropriate for select patients with uncommon types of lung cancer (eg, superior sulcus, chest wall involvement) (see the NCCN Guidelines for NSCLC). Patients with pathologic stage II or greater disease can be referred to a medical oncologist for evaluation. For resected stage IIIA, consider referral to a radiation oncologist. Treatment delays, because of poor coordination among specialists, should be avoided.

The surgical procedure used depends on the extent of disease and on the cardiopulmonary reserve of the patient. Lung-sparing anatomic resection (sleeve lobectomy) is preferred over pneumonectomy, if anatomically appropriate and if margin-negative resection can be achieved; lobectomy or pneumonectomy should be done if physiologically feasible. Sublobular resection, either segmentectomy (preferred) or wedge resection, is appropriate in select patients; the parenchymal resection margins are defined in the NSCLC algorithm (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC). Resection (including wedge resection) is preferred over ablation. Wide wedge resection may improve outcomes. Patients with medically inoperable disease may be candidates for SABR, also known as stereotactic body RT (SBRT). If SABR is considered for patients at high risk, a multidisciplinary evaluation is recommended (see Stereotactic Ablative Radiotherapy in this Discussion).
in the ipsilateral peribronchial and/or hilar region, including direct extension) NSCLC disease. In patients with early-stage disease who had negative nodes by systematic lymph node dissection, complete mediastinal lymph node dissection did not improve survival. Therefore, systematic lymph node sampling is appropriate during pulmonary resection; one or more nodes should be sampled from all mediastinal stations. For right-sided cancers, an adequate mediastinal lymphadenectomy should include stations 2R, 4R, 7, 8, and 9. For left-sided cancers, stations 4L, 5, 6, 7, 8, and 9 should be sampled. Patients should have N1 and N2 node resection and mapping (American Thoracic Society map) with a minimum of 3 N2 stations sampled or a complete lymph node dissection.

Sublobular resection, either segmentectomy (preferred) or wedge resection, is appropriate in select patients (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC): 1) those who are not eligible for lobectomy; and 2) those with a peripheral nodule 2 cm or less with very low-risk features. Segmentectomy (preferred) or wedge resection should achieve parenchymal resection margins that are: 1) 2 cm or more; or 2) the size of the nodule or more.

Stage IIIA N2 Disease
The role of surgery in patients with pathologically documented stage IIIA (N2) disease is described in the NSCLC algorithm (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC) and summarized here. Before treatment, it is essential to carefully evaluate for N2 disease using radiologic and invasive staging (ie, EBUS-guided procedures, mediastinoscopy, thorascopic procedures) and to discuss whether surgery is appropriate in a multidisciplinary team, which should include a board-certified thoracic surgeon. Randomized controlled trials suggest that surgery does not increase survival in these patients. However, one of these trials (EORTC) only enrolled patients with unresectable disease. Most clinicians agree that resection is appropriate for patients with negative preoperative mediastinal nodes and with a single positive node (<3 cm) found at thoracotomy. Neoadjuvant (preoperative) therapy is recommended for select patients. The optimal timing of RT in trimodality therapy (preoperative with chemotherapy or postoperative) is not established and controversial.

In patients with N2 disease, 50% of the NCCN Member Institutions use preoperative chemoradiotherapy whereas 50% use preoperative chemotherapy. There is no evidence that adding RT to induction regimens improves outcomes for patients with stage IIIA (N2) disease when compared with using chemotherapy alone. Clinicians also agree that resection is not appropriate for patients with multiple pathologically proven malignant lymph nodes greater than 3 cm; definitive chemoradiotherapy is recommended for these patients.

The NCCN Panel believes that surgery may be appropriate for select patients with N2 disease, especially those whose disease responds to induction chemotherapy (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC). It is controversial whether pneumonectomy after preoperative chemoradiotherapy is appropriate. Patients with resectable N2 disease should not be excluded from surgery, because some of them may have long-term survival or may be cured.
Thorascopic Lobectomy

Video-assisted thoracic surgery (VATS), which is also known as thorascopic lobectomy, is a minimally invasive surgical treatment that is currently being investigated in all aspects of lung cancer (see *Principles of Surgical Therapy* in the NCCN Guidelines for NSCLC).\(^{316,317}\) Published studies suggest that thorascopic lobectomy has several advantages over thoracotomy.\(^{318-322}\) Acute and chronic pain associated with thorascopic lobectomy is minimal; thus, this procedure requires a shorter length of hospitalization.\(^{323,324}\) Thorascopic lobectomy is also associated with low postoperative morbidity and mortality, minimal risk of intraoperative bleeding, or minimal locoregional recurrence.\(^{325-329}\) Thorascoscopic lobectomy is associated with less morbidity, fewer complications, and more rapid return to function than lobectomy by thoracotomy.\(^{330-333}\)

In patients with stage I NSCLC who had thorascopic lobectomy with lymph node dissection, the 5-year survival rate, long-term survival, and local recurrence were comparable to those achieved by routine open lung resection.\(^{334-338}\) Thorascopic lobectomy has also been shown to improve discharge independence in older populations and patients at high risk.\(^{339,340}\) Data show that thorascopic lobectomy improves the ability of patients to complete postoperative chemotherapy regimens.\(^{341,342}\) Based on its favorable effects on postoperative recovery and morbidity, thorascopic lobectomy (including robotic-assisted approaches) is recommended in the NSCLC algorithm as an acceptable approach for patients who are surgically resectable (and have no anatomic or surgical contraindications) as long as principles of thoracic surgery are not compromised (see *Principles of Surgical Therapy* in the NCCN Guidelines for NSCLC).\(^{343-346}\) Robotic VATS seems to be more expensive with longer operating times than conventional VATS.\(^{347,348}\)

Radiation Therapy

The *Principles of Radiation Therapy* in the NSCLC algorithm include the following: 1) general principles for early-stage, locally advanced, and advanced NSCLC; 2) target volumes, prescription doses, and normal tissue dose constraints for early-stage, locally advanced, and advanced NSCLC; and 3) RT simulation, planning, and delivery.\(^{349-354}\) These RT principles are summarized in this section. Whole brain RT and stereotactic radiosurgery (SRS) for brain metastases are also discussed in this section. The abbreviations for RT are defined in the NSCLC algorithm (see Table 1 in *Principles of Radiation Therapy* in the NCCN Guidelines for NSCLC).

General Principles

Treatment recommendations should be made by a multidisciplinary team. Because RT has a potential role in all stages of NSCLC, as either definitive or palliative therapy, input from board-certified radiation oncologists who perform lung cancer RT as a prominent part of their practice should be part of the multidisciplinary evaluation or discussion for all patients with NSCLC. Uses of RT for NSCLC include: 1) definitive therapy for locally advanced NSCLC, generally combined with chemotherapy; 2) definitive therapy for early-stage NSCLC in patients with contraindications for surgery; 3) preoperative or postoperative therapy for selected patients treated with surgery; 4) therapy for limited recurrences and metastases; and/or 5) palliative therapy for patients with incurable NSCLC.\(^{296,355-362}\) The goals of RT are to maximize tumor control and to minimize treatment toxicity. Advanced technologies such as 4D-Conformal RT simulation, intensity-modulated RT/volumetric modulated arc therapy (IMRT/VMAT), image-guided RT, motion management strategies, and proton therapy have been shown to reduce toxicity and increase survival in nonrandomized trials.\(^{363-367}\) A secondary analysis of a randomized trial (RTOG 0617) reported that
2-year overall survival, PFS, local failure, and distant metastasis-free survival were not significantly different for IMRT when compared with 3D-conformal RT. IMRT yielded lower rates of severe pneumonitis when compared with 3D-conformal RT (3.5% vs. 7.9%; \(P = .039 \)). 368 CT-planned 3D-conformal RT is now considered to be the minimum level.

Definitive RT, particularly SABR, is recommended for patients with early-stage NSCLC (ie, stage I-II, N0) who are medically inoperable or those who refuse surgery (see Stereotactic Ablative Radiotherapy in this Discussion). 293,296,362,369 Interventional radiology ablation is an option for selected patients who are medically inoperable. 276,370,371 By extrapolation from surgical data, chemotherapy (category 2B) may be considered after definitive RT/SABR in patients with high-risk factors for recurrence (eg, large tumors >4 cm in size). 294,372 SABR is also an option for patients at high surgical risk who cannot tolerate a lobectomy (eg, major medical comorbidity or severely limited lung function).

Resection is recommended for patients with early-stage NSCLC who are medically fit (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC). 373 Definitive chemoradiation is recommended for patients with stage II to III disease who are not appropriate surgical candidates. 374 Involved-field RT (also known as involved-field irradiation or IFI) is an option for treating nodal disease in patients with locally advanced NSCLC; IFI may offer advantages over elective nodal irradiation (ENI). 375-378

For patients with advanced lung cancer (ie, stage IV) with extensive metastases, systemic therapy is recommended; palliative RT can be used for symptom relief and potentially for prophylaxis at primary or distant sites. 362,379-381 Shorter courses of palliative RT are preferred for patients with symptomatic chest disease who have poor PS and/or shorter life expectancy (eg, 17 Gy in 8.5 Gy fractions) (see Table 4 in the Principles of Radiation Therapy in the NCCN Guidelines for NSCLC). Higher dose and longer course thoracic RT (eg, ≥30 Gy in 10 fractions) are associated with modestly improved survival and symptoms, especially in patients with good PS. 379,382 The RT recommendations for patients with stages I to IV are described in the NSCLC algorithm (see Principles of Radiation Therapy in the NCCN Guidelines for NSCLC).

The indications for using preoperative or postoperative chemoradiation or RT alone are described in the NSCLC algorithm (see Principles of Radiation Therapy in the NCCN Guidelines for NSCLC). In patients with clinical stage I or II NSCLC who are upstaged to N2+ after surgery, postoperative chemotherapy can be administered followed by postoperative RT (also known as PORT) depending on the margin status (see the NCCN Guidelines for NSCLC). 351,383 For clinical stage III NSCLC, definitive concurrent chemoradiation is recommended (category 1). The optimal management of patients with potentially operable stage IIIA NSCLC is controversial and is discussed in detail in the algorithm (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC). 300,302,313,384 For patients undergoing preoperative therapy before surgical resection of stage IIIA NSCLC, some oncologists prefer chemotherapy alone rather than chemoradiotherapy for the preoperative treatment; 306 RT should generally be given postoperatively if not given preoperatively. The NCCN Panel recommends a preoperative RT dose of 45 to 54 Gy. 305 NCCN Member Institutions are evenly split in their use of preoperative chemoradiotherapy versus preoperative chemoradiation in patients with stage IIIA N2 NSCLC. 300 Similarly, some consider the need for pneumonectomy to be a contraindication to a combined modality surgical approach given the excess mortality observed in clinical
trials, but NCCN Member Institutions are split on this practice as well.

Surgery is associated with potentially greater risk of complications, particularly stump breakdown and bronchopleural fistula, in a field that has had high-dose RT (eg, 60 Gy). Thus, surgeons are often wary of resection in areas that have previously received RT doses of more than 45 to 50 Gy, especially patients who have received definitive doses of concurrent chemoradiation (ie, ≥60 Gy) preoperatively. Soft tissue flap coverage and reduced intraoperative fluid administration and ventilator pressures can reduce the risk of these complications. When giving preoperative RT to less than definitive doses (eg, 45 Gy), one should be prepared up front to continue to a full definitive dose of RT without interruption if the patient does not proceed to surgery for some reason. For these reasons, when considering trimodality therapy, the treatment plan—including assessment for resectability and the type of resection—should be decided before initiation of any therapy.

Target Volumes, Prescription Doses, and Normal Tissue Dose Constraints

The dose recommendations for preoperative, postoperative, definitive, and palliative RT are described in the Principles of Radiation Therapy in the NSCLC algorithm (see Table 4 in the NCCN Guidelines for NSCLC). After surgery, lung tolerance to RT is much less than for patients with intact lungs. Although the dose volume constraints for conventionally fractionated RT for normal lungs are a useful guide (see Table 5 in Principles of Radiation Therapy in the NCCN Guidelines for NSCLC), more conservative constraints should be used for postoperative RT. The NCCN Panel noted that the doses and constraints provided in the tables are not specific prescriptive recommendations; they are useful reference doses that have been commonly used or are from previous clinical trials.

For definitive RT, the commonly prescribed dose is 60 to 70 Gy in 2 Gy fractions over 6 to 7 weeks. The use of higher RT doses is discussed in the NSCLC algorithm (see Principles of Radiation Therapy in the NCCN Guidelines for NSCLC). Doses more than 74 Gy are not currently recommended for routine use. Results from a phase 3 randomized trial (RTOG 0617) suggest that high-dose radiation using 74 Gy with concurrent chemotherapy does not improve survival, and might be harmful, when compared with a dose of 60 Gy. Although optimal RT dose intensification remains a valid question, at higher RT doses, normal tissue constraints become even more important. Although the RT dose to the heart was decreased in the RTOG 0617 trial, survival was decreased; thus, more stringent constraints may be appropriate.

Reports 50, 62, and 83 from the International Commission on Radiation Units and Measurements provide a formalism for defining RT target volumes based on grossly visible disease, potential microscopic extension, and margins for target motion and daily positioning uncertainty (see Figure 1 in Principles of Radiation Therapy in the NCCN Guidelines for NSCLC); the ACR Practice Parameters and Technical Standards are also a helpful reference. It is essential to evaluate the dose volume histogram (DVH) of critical structures and to limit the doses to the organs at risk (such as spinal cord, lungs, heart, esophagus, and brachial plexus) to minimize normal tissue toxicity (see Table 5 in Principles of Radiation Therapy). These constraints are mainly empirical and have for the most part not been validated rigorously. The QUANTEC review provides the most comprehensive estimates from clinical data of dose-response relationships for normal tissue complications. As previously
mentioned, for patients receiving postoperative RT, stricter DVH parameters should be considered for the lungs.

Radiation Simulation, Planning, and Delivery

Treatment planning should be based on CT scans obtained in the treatment position. Intravenous contrast CT scans are recommended for better target delineation whenever possible, especially in patients with central tumors or nodal involvement. FDG PET/CT can significantly improve target delineation accuracy, especially when there is atelectasis or contraindications to intravenous CT contrast. In the NSCLC algorithm, recommendations are provided for patients receiving chemoradiation (including those with compromised lung or cardiac function), photon beams, or IMRT (see Radiation Therapy Simulation, Planning, and Delivery in the Principles of Radiation Therapy in the NCCN Guidelines for NSCLC). Respiratory motion should be managed. The report from the AAPM Task Group 76 is a useful reference for implementing a broad range of motion management strategies as described in the NSCLC algorithm (see Radiation Therapy Simulation, Planning, and Delivery in the NCCN Guidelines for NSCLC).

Stereotactic Ablative Radiotherapy

SABR (also known as SBRT) uses short courses of very conformal and dose-intensive RT precisely delivered to limited-size targets. Studies, including prospective multi-institutional trials, have demonstrated the efficacy of SABR for patients with inoperable stage I NSCLC or for those who refuse surgery. With conventionally fractionated RT, 3-year survival is only about 20% to 35% in these patients, with local failure rates of about 40% to 60%. In prospective clinical trials, local control and overall survival appear to be considerably increased with SABR, generally more than 85%, and about 60% at 3 years (median survival, 4 years), respectively, in patients who are medically inoperable. Substantially higher survival has been observed in patients with potentially operable disease who are treated with SABR; survival is comparable in population-based comparisons to surgical outcomes, but locoregional recurrences are more frequent. It has not been shown that use of SABR for medically operable patients provides long-term outcomes equivalent to surgery. Late recurrences have been reported more than 5 years after SABR, highlighting the need for careful surveillance. If possible, biopsy should confirm NSCLC before use of SABR.

SABR is recommended in the NSCLC algorithm for patients with stage I and II (T1–3,N0,M0) NSCLC who are medically inoperable; SABR is a reasonable alternative to surgery for patients with potentially operable disease who are high risk, elderly, or refuse surgery after appropriate consultation (see the NCCN Guidelines for NSCLC). A combined analysis of 2 randomized trials (that did not complete accrual) assessed SABR compared with lobectomy in operable patients. The analysis does not alter the fact that surgical resection is recommended and typically used for operable patients, but it helps to confirm the indication of SABR for patients with contraindications for surgery or those who refuse surgery. SABR can also be used for patients with limited lung metastases or limited metastases to other body sites. After SABR, assessment of recurrences by imaging can be challenging because of benign inflammatory/fibrotic changes that can remain FDG-PET avid for 2 or more years after treatment, emphasizing the importance of follow-up by a team with experience interpreting such post-treatment effects. This careful follow-up is particularly relevant, because selected patients with localized recurrences after SABR may benefit from surgery or re-treatment with SABR.
SABR fractionation regimens and a limited subset of historically used maximum dose constraints are provided in the NSCLC algorithm (see Tables 2 and 3 in the *Principles of Radiation Therapy* in the NCCN Guidelines for NSCLC). These dose constraints are point-of-reference doses and are not intended to be prescriptive; they are used commonly or have been used in clinical trials. Although none of these dose constraints has been validated as a maximally tolerated dose, outcomes of clinical trials to date suggest that they are safe constraints. The bronchial tree, esophagus, and brachial plexus are critical structures for SABR. For centrally located tumors—those within 2 cm in all directions of any mediastinal critical structure, including the bronchial tree, esophagus, heart, brachial plexus, major vessels, spinal cord, phrenic nerve, and recurrent laryngeal nerve—regimens of 54 to 60 Gy in 3 fractions are not safe and should be avoided; 4 to 10 fraction SABR regimens appear to be effective and safe (see *Principles of Radiation Therapy* in the NCCN Guidelines for NSCLC). Preliminary results (RTOG 0813) suggest that 5-fraction regimens are safe.

SRS or SABR for limited oligometastases to the brain or other body sites, respectively, may be useful for patients with good PS and thoracic disease that can be treated with definitive therapy (see *Stage IV, M1b: Limited Sites* in the NCCN Guidelines for NSCLC). Local therapy combined with targeted therapy is a category 2A recommendation for patients with ALK or ROS1 rearrangements or sensitizing EGFR mutations. Decisions about whether to recommend SABR should be based on multidisciplinary discussion. Hypofractionated or dose-intensified conventional 3D-conformal RT is an option if an established SABR program is not available. Nonrandomized clinical data indicate that local tumor control with SABR is higher than with interventional radiology ablation techniques. Interventional radiology ablation may be appropriate for selected patients for whom local control is not necessarily the highest priority.

Whole Brain RT and Stereotactic Radiosurgery

Many patients with NSCLC have brain metastases (30%–50%), which substantially affect their quality of life. Options for treatment of limited brain metastases include 1) SRS alone; and 2) surgical resection for selected patients followed by SRS or whole brain RT. Selected patients include those with symptomatic metastases or whose tumor tissue is needed for diagnosis (see the NCCN Guidelines for NSCLC). Treatment of limited brain metastases in patients with NSCLC differs from that recommended in the NCCN Guidelines for Central Nervous System Cancers, because patients with NSCLC and brain metastases often have long-term survival; therefore, the potential neurocognitive issues that may occur with whole brain RT are a concern. Clinicians are not using whole brain RT as often in patients with limited brain metastases. For patients with ALK rearrangements and brain metastases, the NCCN Panel recommends switching ALK inhibitors before considering whole brain RT.

A randomized trial assessed cognitive function in 213 patients with 1 to 3 brain metastases who received SRS alone versus SRS with whole brain RT; most patients had lung cancer. At 3 months after SRS alone, patients had less cognitive deterioration (40/63 patients [63.5%]) than those receiving SRS plus whole brain RT (44/48 patients [91.7%]; difference, -28.2%; 90% CI, -41.9% to -14.4%; \(P < .001 \)). Decisions about whether to recommend SRS alone or brain surgery followed by whole brain RT or SRS for limited brain metastases should be based on multidisciplinary discussion, weighing the potential benefit over the risk for each individual patient. Treatment should be individualized for patients with recurrent or progressive brain lesions.
For multiple metastases (eg, >3), whole brain RT is recommended; SRS may be preferred for patients who have good PS and low systemic tumor burden (see the NCCN Guidelines for Central Nervous System Cancers, available at www.NCCN.org). Whole brain RT is associated with measurable declines in neurocognitive function in clinical trials, particularly with increasing dose and advanced age of the patient. However, control of brain metastases confers improved neurocognitive function. For limited metastases, randomized trials have found that the addition of whole brain RT to SRS decreases intracranial recurrence but does not improve survival and may increase the risk of cognitive decline. Thus, SRS or whole brain RT alone is recommended for patients with limited volume metastases. Some have suggested that resection followed by SRS to the cavity (instead of resection followed by whole brain RT) will decrease the risk of neurocognitive problems. A study suggests that using IMRT to avoid the hippocampus may help decrease memory impairment after whole brain RT. A phase 3 randomized trial assessed optimal supportive care (including dexamethasone) with whole brain RT versus optimal supportive care alone in patients with NSCLC and brain metastases who were not eligible for brain surgery or SRS. Overall survival was similar between the groups (HR, 1.06; 95% CI, 0.90–1.26). Overall quality of life, use of dexamethasone, and reported adverse events were also similar between the arms.

Combined Modality Therapy

As previously mentioned, surgery provides the best chance for cure for patients with stage I or II disease who are medically fit and can tolerate surgery. SABR can be considered for patients with unresectable stage I or II (T1–3, N0) disease or those who refuse surgery if their disease is node negative (see Stereotactic Ablative Radiotherapy in this Discussion and see the NCCN Guidelines for NSCLC). In patients with completely resected NSCLC, adjuvant (postoperative) chemotherapy has been shown to improve survival in patients with early-stage disease. Some studies suggest that preoperative chemotherapy (also referred to as neoadjuvant chemotherapy or induction chemotherapy) is as effective as and better tolerated than postoperative chemotherapy (see Preoperative Chemotherapy Followed by Surgery: Trial Data in this Discussion). A randomized trial found no difference in survival with preoperative versus postoperative chemotherapy. The NCCN Guidelines state that patients with stage II or IIIA (T3, N1) disease may be treated with induction chemotherapy before surgery if they are candidates for therapy after surgery. Concurrent chemoradiation is more efficacious than sequential chemoradiation for patients with unresectable stage III disease.

For patients with stage IV disease who have a good PS, platinum-based chemotherapy is beneficial. Data show that early palliative care combined with systemic therapy improved quality of life, mood, and survival in patients with metastatic NSCLC, even if these patients had less aggressive end-of-life care, when compared with those not receiving palliative care alone. Patients should receive treatment for debilitating symptoms. A study also suggests that social support, such as being married, is as effective as systemic therapy. Preliminary results from a recent study indicate that systematic symptom monitoring during outpatient chemotherapy treatment increases overall survival when compared with usual care. Surgery is rarely recommended for patients with stage IV disease. However, surgical resection of limited brain metastases may improve survival in selected patients with stage IV disease and is recommended for selected patients in the NCCN Guidelines (see the NCCN Guidelines for NSCLC, available at www.NCCN.org). Definitive local therapy with surgical resection or RT is recommended for limited metastases located...
in sites other than the brain if definitive thoracic therapy is feasible (see Stage IVA, M1b: Limited Sites in the NCCN Guidelines for NSCLC). The trials supporting the recommendations for combined modality therapy are discussed in the following sections.

Surgery Followed by Chemotherapy: Trial Data

In the NSCLC algorithm for resected stage IA disease, postoperative chemotherapy is not recommended based on the trials described in the following paragraphs. Postoperative chemotherapy may be considered for high-risk, margin-negative, stage IB disease (see the NCCN Guidelines for NSCLC). Recommended chemotherapy regimens for preoperative and postoperative therapy are provided in the NCCN Guidelines.

For the 2018 update (Version 1), the NCCN Panel added 2 preoperative and postoperative therapy regimens for patients with comorbidities or those not able to tolerate cisplatin, including 1) carboplatin/gemcitabine; and 2) carboplatin/pemetrexed (nonsquamous only).

The International Adjuvant Lung Cancer Trial (IALT) reported a statistically significant survival benefit with cisplatin-based postoperative chemotherapy in patients with completely resected stage I, II, or III NSCLC. The study included 1867 patients with surgically resected lung cancer who were randomly assigned either to cisplatin-based postoperative chemotherapy or to observation, with a median follow-up duration of 56 months. A higher survival rate (45% vs. 40% at 5 years; HR for death, 0.86; 95% CI, 0.76–0.98; P < .03) and disease-free survival rate (39% vs. 34% at 5 years; HR, 0.83; 95% CI, 0.74–0.94; P < .003) were reported for patients assigned to chemotherapy when compared with observation. IALT data suggest that cisplatin-based postoperative chemotherapy improves survival 5 years after treatment in patients with completely resected NSCLC. However, after 7.5 years of follow-up, there were more deaths in the chemotherapy group and the benefit of chemotherapy decreased over time. Data show that postoperative chemotherapy prevents recurrences.

The NCIC CTG JBR.10 trial and the ANITA trial compared the effectiveness of postoperative vinorelbine/cisplatin versus observation in early-stage NSCLC. In the JBR.10 trial, 482 patients (ECOG PS of 0–1) with completely resected stage IB (T2a, N0) or stage II (T1, N1, or T2, N1) NSCLC were randomly assigned either to vinorelbine/cisplatin or to observation. Postoperative chemotherapy significantly prolonged overall survival (94 vs. 73 months; HR for death, 0.69; P = .04) and relapse-free survival (not reached vs. 47 months, HR for recurrence, 0.60; P < .001) when compared with observation alone. The 5-year survival rates were 69% and 54%, respectively (P = .03). When compared with observation alone, postoperative chemotherapy is beneficial for patients with stage II disease but not for stage IB disease as shown by updated data from JBR.10 after 9 years of follow-up. In patients with stage II disease receiving postoperative chemotherapy, median survival is 6.8 versus 3.6 years in those who were only observed. Of note, patients receiving chemotherapy did not have an increased death rate.

In the ANITA trial, 840 patients with stage IB (T2a, N0), II, or IIIA NSCLC were randomly assigned either to postoperative vinorelbine/cisplatin or to observation. Grade 3/4 toxicities were manageable in the chemotherapy group; 7 toxic deaths were reported. After a median follow-up of 76 months, median survival was 66 months in the chemotherapy group and 44 months in the observation group. Postoperative chemotherapy significantly improved (8.6%) the 5-year overall survival in patients with completely resected stage II and IIIA disease, although no benefit was observed in stage I. Some clinicians consider vinorelbine/cisplatin to be the preferred regimen for completely resected early-stage NSCLC based on the number of trials and the
amount of use; however, most clinicians in the United States prefer to use regimens with less toxicity. A meta-analysis of 4,584 patients (LACE) found that postoperative cisplatin-based chemotherapy increased survival over 5 years (absolute benefit of 5.4%); there was no difference among the chemotherapy regimens (vinorelbine, etoposide, and others). A subgroup analysis found that cisplatin/vinorelbine also increased survival. The benefit was greater in patients with stage II and III disease and with good PS. Postoperative chemotherapy benefited elderly patients up to 80 years of age.

The CALGB 9633 trial assessed paclitaxel/carboplatin in patients with stage IB (T2a, N0, M0) lung cancer. In this trial, 344 patients were randomly assigned either to paclitaxel/carboplatin or to observation (within 4–8 weeks of resection) with a median follow-up duration of 74 months. Postoperative chemotherapy was well tolerated with no chemotherapy-related toxic deaths. Overall survival at 6 years was not significantly different (although a subset analysis showed a benefit for tumors 4 cm or more), although 3-year survival was significant (80% vs. 73%, P = .02). Thus, the carboplatin/paclitaxel regimen is only recommended for early-stage disease if patients cannot tolerate cisplatin (see Chemotherapy Regimens for Neoadjuvant and Adjuvant Therapy in the NCCN Guidelines for NSCLC). It is important to note that the CALGB trial was underpowered for patients with stage 1B disease.

Preoperative Chemotherapy Followed by Surgery: Trial Data

Data from clinical trials in patients with resected NSCLCs indicate that delivery of chemotherapy is an important problem. In the postoperative setting, significant comorbidities and incomplete recovery after surgery often make it difficult for patients to tolerate systemic therapy. This problem was demonstrated in the NATCH phase 3 trial (which compared surgery alone to preoperative or postoperative chemotherapy with paclitaxel/carboplatin), because 90% of the preoperative cohort completed 3 cycles of chemotherapy but only 61% of the postoperative cohort completed chemotherapy; however, survival was equivalent among all 3 arms. A randomized trial found no difference in 3-year overall survival (67.4% vs. 67.7%) with preoperative versus postoperative chemotherapy in patients with early-stage NSCLC; response rate and quality of life were similar in both arms. Postoperative chemotherapy (with or without RT or reresection) is recommended and typically used for early-stage disease in the NCCN Guidelines.

Several trials suggest that preoperative therapy is beneficial in patients with N2 disease. Other trials suggest that preoperative therapy is beneficial in patients with earlier stage disease. A follow-up, randomized intergroup trial (SWOG 9900) evaluated preoperative paclitaxel/carboplatin in 354 patients with stage IB to IIA (but not N2) disease versus surgery alone. The trial closed prematurely because of practice changes and was therefore not appropriately powered. This SWOG trial did show a trend toward improved PFS (33 vs. 20 months) and overall survival (62 vs. 41 months) with preoperative chemotherapy, and no difference in resection rates between the 2 arms.

Scagliotti et al published a phase 3 trial of preoperative cisplatin/gemcitabine versus surgery alone in 270 patients with stage IB to IIA disease. Although the trial closed early, a significant survival benefit was seen in patients with stages IIB and IIIA disease who received chemotherapy (HR, 0.63). Song et al published a meta-analysis of all available randomized clinical trials evaluating preoperative chemotherapy in resectable NSCLCs. This meta-analysis evaluated 13 randomized trials; the HR suggests that overall survival in
the preoperative chemotherapy arm is similar to the surgery alone arm (HR, 0.84; 95% CI, 0.77–0.92; P = .0001).516 These results are similar to those reported in another meta-analysis (HR, 0.89; 95% CI, 0.81–0.98; P = .02).517 The benefit from preoperative chemotherapy is similar to that attained with postoperative chemotherapy.517,523,552

Chemoradiation: Trial Data

The major controversies in NSCLC relate to the management of patients with stage IIIA disease (see the *Role of Surgery in Patients with Stage IIIA (N2) NSCLC in Principles of Surgical Therapy* in the NCCN Guidelines for NSCLC). All 3 treatment modalities—surgical resection, chemotherapy, and radiation—may be used when treating stage III disease. The ongoing debate centers on which modalities to use and in what sequence.559-563 For patients with unresectable stage IIIA or stage IIIB disease, combined modality therapy (chemoradiation) is more efficacious than radiation alone.559,560,562,563 Concurrent chemoradiation is more efficacious than sequential chemoradiation.525,528 However, concurrent chemoradiation has a higher rate of grade 3 or 4 esophagitis than sequential chemoradiation. Selection of patients should be based not only on the anticipated response to therapy but also on how well the patient is anticipated to tolerate therapy. Frail patients may not be able to tolerate concurrent chemoradiation.277,564

Concurrent chemoradiation regimens that may be used for all histologies for initial treatment include cisplatin/etoposide, cisplatin/vinblastine, and carboplatin/paclitaxel (see Chemotherapy Regimens Used with Radiation Therapy in the NCCN Guidelines for NSCLC).400,525,527,565-569 For nonsquamous NSCLC, additional concurrent chemoradiation regimens may be used including carboplatin/pemetrexed and cisplatin/pemetrexed.570-572 A weekly paclitaxel/carboplatin regimen is another chemoradiation option.400 The different options for preoperative, definitive, and postoperative chemotherapy/RT are described in detail in the algorithm. Recently, the NCCN Panel removed the preferred designation for the cisplatin/etoposide and cisplatin/vinblastine concurrent regimens based on data from a phase 3 randomized trial and a retrospective assessment of the Veterans Administration data.565,569,573 For the 2018 update (Version 1), the NCCN Panel expanded the list of regimens for sequential chemoradiation to include regimens that are also used for preoperative and postoperative chemotherapy (ie, cisplatin combined with pemetrexed [nonsquamous only], docetaxel, etoposide, gemcitabine, or vinorelbine; carboplatin combined with paclitaxel) and also added 2 new carboplatin regimens for patients with comorbidities or those not able to tolerate cisplatin, including 1) carboplatin/gemcitabine; and 2) carboplatin/pemetrexed (nonsquamous only).

Durvalumab

Durvalumab is a human immune checkpoint inhibitor antibody that inhibits PD-L1 (see PD-L1 Expression Levels and Immunotherapies in this Discussion).261-263,266 A recent phase 3 randomized trial (PACIFIC) compared consolidation therapy (ie, after chemoradiation) with durvalumab versus placebo in patients with unresectable stage III NSCLC (PS 0–1) who had not progressed after 2 or more cycles of definitive concurrent platinum-based chemoradiation.266 Patients received durvalumab after receiving concurrent chemoradiation (1–42 days). Most patients were current or former smokers and did not have EGFR mutations; their PD-L1 status was typically less than 25% or unknown. Durvalumab was effective in patients with both squamous and nonsquamous NSCLC. The PFS was 16.8 months for durvalumab (95% CI, 13.0–18.1) versus 5.6 months for placebo (95% CI, 4.6–7.8) (stratified HR for disease progression or death, 0.52; 95% CI, 0.42–0.65; P < .001). The median time to death or distant metastasis was
significantly longer with durvalumab when compared with placebo (23.2 months vs. 14.6 months; \(P < .001 \)). Patients receiving durvalumab had a longer ongoing response at 18 months when compared with placebo (72.8% vs. 46.8%). Grade 3 or 4 adverse events occurred at a similar rate in both groups of patients (durvalumab, 29.9% vs. placebo, 26.1%). Pneumonia was the most common grade 3 or 4 adverse event (durvalumab, 4.4% vs. placebo, 3.8%). The NCCN Panel recommends durvalumab as consolidation therapy (regardless of PD-L1 status) for patients (PS 0–1) with unresectable stage III NSCLC who have not progressed after 2 or more cycles of definitive concurrent platinum-based chemoradiation based on this trial. \(^{266}\) Durvalumab should be discontinued for patients with severe or life-threatening pneumonitis and should be withheld or discontinued for other severe or life-threatening immune-mediated adverse events when indicated (see prescribing information).

Chemotherapy: Trial Data

Patients with stage IV disease who have a good PS benefit from chemotherapy, usually with a platinum-based regimen. \(^{531-533}\) Chemotherapy is only recommended for patients with stage IV NSCLC and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown. Recommended chemotherapy includes platinum agents (eg, cisplatin, carboplatin), taxanes (eg, paclitaxel, albumin-bound paclitaxel, docetaxel), vinorelbine, etoposide, pemetrexed, and gemcitabine (see *Systemic Therapy for Advanced or Metastatic Disease* in the NCCN Guidelines for NSCLC). To clarify use of systemic therapy, the NCCN Guidelines list all of the combination systemic therapy regimens and single agents that are recommended for patients with metastatic NSCLC depending on histology and PS (see *Systemic Therapy for Advanced or Metastatic Disease* in the NCCN Guidelines for NSCLC). Combinations using many of these drugs produce 1-year survival rates of 30% to 40% and are more efficacious than single agents. \(^{236,557,574-576}\) In the United States, frequently used initial cytotoxic regimens for nonsquamous NSCLC include: 1) cisplatin (or carboplatin)/pemetrexed; or 2) carboplatin/paclitaxel with (or without) bevacizumab. \(^{577,578}\) Gemcitabine/cisplatin is recommended for patients with either squamous cell carcinoma or nonsquamous NSCLC. \(^{236,577-579}\) These regimens are recommended based on phase 3 randomized trials (eg, cisplatin/pemetrexed, carboplatin/paclitaxel [with or without bevacizumab], gemcitabine/cisplatin). \(^{235,236}\) The initial cytotoxic systemic therapy regimens were recently revised by deleting options that are less effective, more toxic, and/or infrequently used in the United States based on each panel member’s experience and data generated by surveying the NCCN Panel (see the NCCN Evidence Blocks™ for NSCLC, available at www.NCCN.org). For patients with nonsquamous NSCLC and NSCLC NOS, panel members deleted carboplatin/vinorelbine, cisplatin/vinorelbine, etoposide, irinotecan, and vinorelbine. For patients with squamous cell NSCLC, panel members deleted carboplatin/etoposide, carboplatin/vinorelbine, cisplatin/gemcitabine, cisplatin/gemcitabine/necitumumab, cisplatin/vinorelbine, etoposide, irinotecan, and vinorelbine.

The NCCN Panel recently voted unanimously to delete the necitumumab/cisplatin/gemcitabine regimen from the NCCN Guidelines for patients with metastatic squamous cell NSCLC. This decision reflects the fact that the NCCN Panel feels the addition of necitumumab to the regimen is not beneficial based on toxicity, cost, and limited improvement in efficacy when compared with cisplatin/gemcitabine. A phase 3 randomized trial only showed a slight improvement in overall survival (11.5 months [95% CI, 10.4–12.6] vs. 9.9 months [95% CI, 8.9–11.1]). \(^{580}\) The stratified HR was only 0.84 (95% CI, 0.74–0.96; \(P = .01 \)). In addition, there were more grade 3 or higher adverse events in...
patients receiving the necitumumab regimen (388 [72%] of 538 patients) than in patients receiving only the gemcitabine/cisplatin (333 [62%] of 541). Although it has been suggested that adding necitumumab to cisplatin/gemcitabine adds value and is cost-effective, the NCCN Panel does not agree.

Many oncologists use pemetrexed-based regimens for adenocarcinomas (if patients are not candidates for targeted therapy or immunotherapy), because taxane-based regimens are associated with more toxicity (eg, neurotoxicity). There are no agents for the prevention of peripheral neuropathy, and few agents are useful for treatment. The POINTBREAK trial showed that carboplatin/pemetrexed/bevacizumab is a reasonable option and confirmed that taxane-based regimens are more toxic than pemetrexed-based regimens. The POINTBREAK trial also showed that both regimens are similar in regard to overall survival rates; therefore, oncologists may return to using taxane-based regimens, which are well established. A retrospective cohort study suggests that the addition of bevacizumab (to carboplatin/paclitaxel) does not increase survival in older patients (≥65 years) with advanced nonsquamous NSCLC. However, another retrospective cohort study reported increased survival in older patients. A combined analysis of the ECOG 4599 and POINTBREAK trials found a survival benefit with the addition of bevacizumab (to carboplatin/paclitaxel) in patients younger than 75 years but no benefit in those older than 75 years.

For patients with advanced NSCLC who have a PS of 2, platinum-based combinations and a few single-agent chemotherapy agents are recommended in the NCCN Guidelines; cisplatin-based regimens are not recommended in this setting. For nonsquamous NSCLC or NSCLC NOS, single-agent chemotherapy includes gemcitabine, pemetrexed, or taxanes; combination chemotherapy regimens include carboplatin/paclitaxel or carboplatin/pemetrexed. Patients with a PS of 2 are often just treated with single-agent chemotherapy because of concerns about toxicity. Results from a trial reported that treatment with carboplatin/pemetrexed increased median overall survival when compared with pemetrexed alone (9.3 vs. 5.3 months, \(P = .001 \)) in patients with a PS of 2; however, 4 treatment-related deaths occurred in the carboplatin/pemetrexed arm. The NCCN Panel recently deleted etoposide, irinotecan, and vinorelbine from the list of recommended single-agent chemotherapy for patients with all histologies because these agents are rarely used in the United States.

Phase 3 randomized trials have shown that many of the platinum-doublet combinations yield similar objective response rates and survival. The platinum-doublet regimens differ slightly for toxicity, convenience, and cost; thus, clinicians can individualize therapy for their patients. Other carboplatin-based regimens include gemcitabine/carboplatin, docetaxel/carboplatin, and pemetrexed/carboplatin; non–platinum-based regimens such as gemcitabine/vinorelbine and gemcitabine/docetaxel are also options. In spite of the development of new chemotherapy regimens, the prognosis for advanced inoperable lung cancer remains poor.

Note that albumin-bound paclitaxel can be substituted for paclitaxel or docetaxel for patients: 1) who have experienced hypersensitivity reactions after receiving paclitaxel or docetaxel despite premedication; or 2) in whom premedications (ie, dexamethasone, H2 blockers, H1 blockers) to prevent hypersensitivity are contraindicated. A phase 3 randomized trial reported that an albumin-bound paclitaxel/carboplatin regimen is associated with less neurotoxicity and improved response rate, when compared with the control arm of paclitaxel/carboplatin, in
patients with advanced NSCLC. The FDA has approved albumin-bound paclitaxel/carboplatin for patients with locally advanced or metastatic NSCLC who are not candidates for curative surgery or RT. Based on the trial and the FDA approval, the NCCN Panel recommends an albumin-bound paclitaxel/carboplatin regimen as initial cytotoxic therapy for patients with advanced NSCLC and good PS.

Targeted Therapies
Specific targeted therapies are available for the treatment of advanced NSCLC. Afatinib, alectinib, brigatinib, ceritinib, crizotinib, erlotinib, gefitinib, osimertinib, dabrafenib, and trametinib are oral TKIs. Bevacizumab and ramucirumab are recombinant monoclonal antibodies that target vascular endothelial growth factor (VEGF) or VEGF receptor, respectively. Cetuximab is a monoclonal antibody that targets EGFR. Erlotinib, gefitinib, and afatinib inhibit EGFR sensitizing mutations; osimertinib inhibits both EGFR sensitizing mutations and T790M. Crizotinib inhibits ALK rearrangements, ROS1 rearrangements, and MET (ie, high-level MET amplification, METex14 mutation). Ceritinib inhibits ALK rearrangements and IGF-1 receptor. Alectinib inhibits ALK and RET rearrangements. Brigatinib inhibits various ALK rearrangements and other targets. Dabrafenib/trametinib inhibits BRAF V600E mutations; trametinib also inhibits MEK; both agents inhibit different kinases in the RAS/RAF/MEK/ERK pathway. Other targeted therapies are being developed (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC).

VEGF or VEGF Receptor Inhibitors

Bevacizumab
Bevacizumab is a recombinant monoclonal antibody that targets VEGF. In 2006, the FDA approved bevacizumab for patients with unresectable, locally advanced, recurrent, or metastatic nonsquamous NSCLC. The ECOG recommends bevacizumab in combination with paclitaxel/carboplatin for select patients with advanced nonsquamous NSCLC based on the results of phase 2 to 3 clinical trials (ECOG 4599). To receive treatment with bevacizumab and chemotherapy, patients must meet the following criteria: nonsquamous NSCLC and no recent history of hemoptysis. Any regimen with a high risk for thrombocytopenia—and, therefore, possible bleeding—should be used with caution when combined with bevacizumab. Bevacizumab in combination with chemotherapy (ie, carboplatin/paclitaxel, carboplatin/pemetrexed, cisplatin/pemetrexed) is one of the recommended options for patients with a PS 0 to 1, nonsquamous NSCLC or NSCLC NOS, and negative or unknown test results for ALK or ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown (see Sensitizing EGFR Mutation Positive/First-Line Therapy or ALK Positive/First-Line Therapy in the NCCN Guidelines for NSCLC). Bevacizumab is not recommended for patients with squamous cell NSCLC.

Ramucirumab
Ramucirumab is a recombinant monoclonal antibody that targets VEGF receptor. A phase 3 randomized trial (REVEL) assessed ramucirumab/docetaxel versus docetaxel alone in patients with metastatic NSCLC that had progressed. The median overall survival was reported to be slightly increased with ramucirumab/docetaxel versus docetaxel alone (10.5 vs. 9.1 months; HR, 0.86, 95% CI, 0.75–0.98; \(P < .023 \)). Ramucirumab in combination with docetaxel is approved by the FDA for patients with metastatic NSCLC with disease progression on or after platinum-based chemotherapy. The NCCN Panel added ramucirumab/docetaxel (category 2A) as an option for subsequent therapy for metastatic NSCLC that has progressed after...
first-line chemotherapy based on the phase 3 randomized trial and the FDA approval. Some panel members feel that the data are statistically significant but not clinically relevant. More than 70% of patients had grade 3 or higher adverse events in both groups (79% for ramucirumab/docetaxel vs. 71% for docetaxel alone). Adverse events of special concern with ramucirumab/docetaxel therapy include risk for severe hemorrhage, grade 3 to 4 gastrointestinal bleeding, gastrointestinal perforation or fistula, impaired wound healing, and poorly controlled hypertension. There were 16 deaths from grade 3 or worse pulmonary hemorrhage and other adverse events in the REVEL trial: 8 in the ramucirumab/docetaxel arm and 8 in the docetaxel alone arm.

Oral TKIs

Erlotinib and Gefitinib

Erlotinib and gefitinib are oral TKIs that inhibit sensitizing *EGFR* mutations. In a phase 3 randomized trial (IPASS), patients with sensitizing *EGFR* mutations who received gefitinib had increased PFS (24.9% vs. 6.7%), response rate (71.2% vs. 47.3%), and quality of life with fewer side effects (eg, neutropenia) when compared with those receiving chemotherapy (carboplatin/paclitaxel). Updated results from the IPASS study showed that overall survival was similar in patients receiving gefitinib or chemotherapy regardless of sensitizing *EGFR* mutation status. These results probably occurred because patients who had been assigned to first-line chemotherapy were able to receive TKIs as subsequent therapy if they were found to have sensitizing *EGFR* mutations. A phase 3 randomized trial (EURTAC) in European patients with metastatic NSCLC and sensitizing *EGFR* mutations showed increased PFS and response rate for those receiving erlotinib when compared with chemotherapy. For erlotinib, the median PFS was 9.7 months (95% CI, 8.4–12.3) compared with 5.2 months (95% CI, 4.5–5.8) for chemotherapy (HR, 0.37; 95% CI, 0.25–0.54; *P* < .0001). Fewer patients receiving erlotinib had severe adverse events or died when compared with those receiving chemotherapy. The FDA has approved the use of erlotinib as first-line therapy in patients with sensitizing *EGFR* mutations. Previously, erlotinib was commonly used in the United States in patients with sensitizing *EGFR* mutations because of restrictions on the use of gefitinib. However, gefitinib was re-approved by the FDA based on a phase 4 study and is available in the United States. The NCCN Panel recommends erlotinib and gefitinib (category 1) as first-line therapy in patients with advanced, recurrent, or metastatic non-squamous NSCLC who have known active sensitizing *EGFR* mutations (regardless of their PS) based on these trials and FDA approvals (see Sensitizing *EGFR* Mutation Positive in the NCCN Guidelines for NSCLC). EGFR TKIs are recommended in patients with metastatic NSCLC and sensitizing *EGFR* mutations, because quality of life is improved when compared with chemotherapy. Erlotinib and gefitinib are orally active TKIs that are very well tolerated by most patients. An analysis of 5 clinical trials in patients, mainly from the Western hemisphere, (n = 223) with advanced NSCLC (stage IIIb or IV) found that those with sensitizing *EGFR* mutations who received TKIs had a 67% response rate and an overall survival of about 24 months. The TORCH trial suggested that *EGFR* mutation testing should be done in patients with advanced non-squamous NSCLC. Survival was increased in patients with wild-type *EGFR* who received first-line chemotherapy compared with those who received erlotinib first followed by subsequent chemotherapy (11.6 vs. 8.7 months). The OPTIMAL trial reported that PFS was increased in patients with sensitizing *EGFR* mutations who received erlotinib. ASCO recommends that patients be tested for *EGFR* mutations. The ESMO Guidelines specify that only patients...
with nonsquamous NSCLC (eg, adenocarcinoma) be assessed for EGFR mutations.137,588 Patients with pure squamous cell carcinoma are unlikely to have sensitizing EGFR mutations; those with adenosquamous carcinoma may have mutations.139

An updated study (CALGB 30406) compared erlotinib alone versus erlotinib/carboplatin/paclitaxel as first-line therapy in patients (mainly Caucasian) with advanced NSCLC.625 The data showed that erlotinib alone was associated with fewer side effects in patients with sensitizing EGFR mutations when compared with erlotinib/chemotherapy. Thus, it is appropriate to interrupt or complete planned chemotherapy and switch to EGFR TKI therapy in patients found to have sensitizing EGFR mutations during chemotherapy (see \textit{EGFR Mutation Positive/First-Line Therapy} in the NCCN Guidelines for NSCLC).626 The NCCN Guidelines do not recommend adding EGFR TKIs to current chemotherapy based on this CALGB study.625 EGFR TKIs may be continued in patients who have progressed if patients do not have multiple systemic symptomatic lesions (see \textit{Continuation of Targeted Therapy After Progression on Initial Therapy} in this Discussion).

A phase 3 trial (WJOG 5108L) assessed gefitinib versus erlotinib for patients with advanced lung cancer who had been previously treated with chemotherapy; most patients (72\%) were positive for EGFR mutations.627 The median PFS for gefitinib versus erlotinib was 8.3 and 10.0 months, respectively, in patients positive for EGFR mutations (HR, 1.093; 95\% CI, 0.879–1.358; \textit{P} = .424). The main grade 3 or 4 toxicities included rash (gefitinib: 2.2\% vs. erlotinib: 18.1\%) and increases in alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels (gefitinib: 6.1\%/13.0\% vs. erlotinib: 2.2\%/3.3\%).

Afatinib

Afatinib is an oral TKI that inhibits the entire ErbB/HER family of receptors including EGFR and HER2.628,629 A randomized phase 3 trial reported that first-line therapy with afatinib improved PFS when compared with cisplatin/pemetrexed in patients with metastatic adenocarcinoma who have sensitizing EGFR mutations (11.1 vs. 6.9 months, \textit{P} = .001).210 The FDA has approved afatinib for first-line treatment of patients with metastatic NSCLC who have sensitizing EGFR mutations.630,631 Based on this phase 3 randomized trial and the FDA approval, the NCCN Panel recommends afatinib for first-line therapy (category 1) in patients with metastatic nonsquamous NSCLC who have sensitizing EGFR mutations (see the NCCN Guidelines for NSCLC).210,233,628 Afatinib may also be continued in patients who have progressed if patients do not have multiple systemic symptomatic lesions (see \textit{Continuation of Targeted Therapy After Progression on Initial Therapy} in this Discussion).

A phase 2B trial assessed afatinib compared with gefitinib for first-line therapy in patients with metastatic adenocarcinoma and sensitizing EGFR mutations.633 The PFS was essentially the same in patients receiving afatinib when compared with those receiving gefitinib (median PFS, 11.0 months [95\% CI, 10.6–12.9] with afatinib vs. 10.9 months [9.1–11.5] with gefitinib; HR, 0.73 [95\% CI, 0.57–0.95]; \textit{P} = .017). These slight PFS differences are not clinically relevant and the NCCN Guidelines do not state that one EGFR TKI is more efficacious than another (see the NCCN Evidence Blocks for NSCLC, available at \texttt{www.NCCN.org}).627 Overall survival data are not yet available. Patients receiving afatinib had more serious treatment-related side effects when
compared with those receiving gefitinib (11% [17/160] for afatinib vs. 4% [7/159] for gefitinib). One patient receiving gefitinib died from treatment-related hepatic and renal failure; other deaths were not considered to be related to treatment (9% vs. 6% [15/160 vs. 10/159]). More patients receiving afatinib had diarrhea (13% vs. 1%), whereas more patients receiving gefitinib had elevations in liver enzyme levels (0% vs. 9%). Afatinib is rated as slightly less safe than erlotinib or gefitinib (ie, a rating of 3 for afatinib vs. 4 for erlotinib and gefitinib) (see the NCCN Evidence Blocks for NSCLC, available at www.NCCN.org).

Osimertinib
Osimertinib (AZD9291) is an oral TKI that inhibits both EGFR sensitizing mutations and T790M. EGFR T790M is a mutation associated with acquired resistance to first-line therapy with EGFR TKI therapy and has been reported in about 60% of patients with disease progression after initial response to sensitizing EGFR TKI therapy.173,185-191 Most patients with sensitizing EGFR mutations and metastatic NSCLC typically progress after about 9.7 to 13 months of therapy with erlotinib, gefitinib, or afatinib.186,193-195 Data show that patients receiving osimertinib as first-line therapy have PFS of about 19 months.634,635

First-Line Therapy
A recent phase 1 study (AURA) reported that osimertinib is efficacious and safe when used as first-line therapy for patients (n = 60) with EGFR mutation–positive locally advanced or metastatic NSCLC.636 Acquired T790M was not detected in plasma samples assessed in 38 patients after progression. A recent phase 3 trial (FLAURA) assessed first-line therapy with osimertinib compared with either erlotinib or gefitinib in patients with locally advanced or metastatic NSCLC and EGFR mutations regardless of T790M status.634,635 Data in patients without CNS metastases show that osimertinib improved PFS (19.1 months [95% CI, 15.2–23.5]) when compared with either erlotinib or gefitinib (10.9 months [95% CI, 9.6–12.3]; HR, 0.46 [95% CI, 0.36–0.59; \(P<.001\))]. The duration of response was longer with osimertinib when compared with erlotinib or gefitinib (median, 17.2 vs. 8.5 months). Only 6% (17/279) of patients receiving osimertinib had CNS progression events when compared with 15% (42/277) of those receiving erlotinib or gefitinib. Grade 3 or higher adverse events were reported in 34% (94/279) of patients receiving osimertinib and 45% (124/277) of patients receiving erlotinib or gefitinib.

The NCCN Panel recommends (category 2A) osimertinib as first-line therapy for patients with locally advanced or metastatic NSCLC who have sensitizing EGFR mutations based on these trials. For patients with sensitizing EGFR mutations who progress during or after first-line therapy with osimertinib, recommended subsequent therapy depends on whether the progression is asymptomatic or symptomatic and includes: 1) considering local therapy; 2) continuing osimertinib; or 3) a first-line systemic therapy regimen for either nonsquamous or squamous cell NSCLC (such as cisplatin/pemetrexed or cisplatin/gemcitabine, respectively). There are no data to support using erlotinib, gefitinib, or afatinib after progression on first-line therapy with osimertinib.

Subsequent Therapy
A recent phase 3 randomized trial assessed osimertinib versus platinum-pemetrexed chemotherapy in patients with EGFR T790M positive metastatic NSCLC who had progressed on first-line erlotinib, gefitinib, or afatinib. Data show that PFS was increased with osimertinib when compared with chemotherapy (10.1 vs. 4.4 months; HR, 0.30; 95% CI, 0.23–0.41; \(P < .001\)).195 PFS was also increased in patients with CNS metastases who received osimertinib (8.5 vs. 4.2 months; HR,
0.32; 95% CI, 0.21–0.49). In addition, the objective response rate was improved with osimertinib (71%; 95% CI, 65%–76%) when compared with chemotherapy (31%; 95% CI, 24%–40%) (odds ratio for objective response, 5.39; 95% CI, 3.47–8.48; \(P < .001 \)). The disease control rate is about 93% with osimertinib (95% CI, 90%–96%) and about 74% with chemotherapy (95% CI, 66%–81%). Patients receiving osimertinib had fewer grade 3 or higher adverse events when compared with those receiving chemotherapy (23% vs. 47% [63/279 vs. 64/136]). There were 4 fatal events with osimertinib (respiratory failure [2], pneumonitis, ischemic stroke) and one with chemotherapy (hypovolemic shock).

The FDA has approved osimertinib for patients with metastatic \textit{EGFR} T790M-positive NSCLC, as detected by an FDA-approved test, who have progressed on or after first-line therapy with erlotinib, gefitinib, or afatinib. Based on a phase 3 randomized trial and FDA approval, the NCCN Panel recommends osimertinib (category 1) as subsequent therapy for patients with metastatic \textit{EGFR} T790M-positive NSCLC who have progressed on erlotinib, gefitinib, or afatinib (see Second-Line and Beyond (Subsequent) Systemic Therapy in this Discussion).195 T790M can be assessed using an FDA-approved test or other validated laboratory test done in a Clinical Laboratory Improvement Amendments (CLIA)-approved laboratory. Data suggest that plasma genotyping (also known as liquid biopsy or plasma biopsy) may be considered instead of tissue biopsy to detect whether patients have T790M; however, if the plasma biopsy is negative, then tissue biopsy is recommended if feasible.637,638 The NCCN Panel also recommends osimertinib (category 1) for patients with T790M who have progression with symptomatic brain metastases based on data showing an improvement.195,639-642

Several studies suggest that pulse erlotinib is beneficial for patients with \textit{EGFR} mutations who have progressive leptomeningeal disease.643-645 In one study of high-dose erlotinib, neurologic symptoms and PS improved in 50% (6/12) and 33% (4/12) of patients, respectively; median survival was 6.2 months (95% CI, 2.5–8.5 months).645 Preliminary data from a recent study (BLOOM) suggest that osimertinib is beneficial for patients with \textit{EGFR} mutations (regardless of T790M status) who have progressive leptomeningeal disease.646 In this study (n = 32), 23 patients receiving osimertinib (160 mg once daily) had brain imaging assessment; 10 had radiologic improvement and 13 had stable disease. At a 12-week neurologic assessment, 88% (7/8) of symptomatic patients improved and one had stable disease. Of 15 asymptomatic patients, 87% (13/15) remained asymptomatic.646 Based on these studies, the NCCN Panel feels that osimertinib (regardless of T790M status) or pulse erlotinib can be considered for patients with \textit{EGFR} mutations who have progressive leptomeningeal disease; for the 2018 update (Version 1), the NCCN Panel added the recommendation for osimertinib. Data also suggest that afatinib may be beneficial in patients with \textit{EGFR} mutations who have progressive leptomeningeal disease.647,648

\textbf{Crizotinib}

Crizotinib inhibits \textit{ALK} rearrangements, \textit{ROS1} rearrangements, and some MET tyrosine kinases (high-level \textit{MET} amplification or \textit{METex14} mutation); it is approved by the FDA for patients with locally advanced or metastatic NSCLC who have \textit{ALK} gene rearrangements (ie, \textit{ALK}-positive disease) or \textit{ROS1} rearrangements.128,243,245,649-653 The NCCN Panel recommends 3 agents for patients with ALK-positive disease—alectinib, crizotinib, and ceritinib—and all are category 1 based on phase 3 randomized trials and FDA approvals (see the Alectinib and Ceritinib and \textit{ALK Rearrangements} in this Discussion and the NCCN Guidelines for NSCLC). The NCCN Panel voted that alectinib (category 1) is the preferred agent for first-line therapy for patients with metastatic NSCLC who are positive for \textit{ALK} gene rearrangements.652,653
rearrangements (see Alectinib in this Discussion). The NCCN Panel recommends 2 agents for patients with ROS1 rearrangements—crizotinib (preferred) and ceritinib—based on trial data and FDA approvals (see Ceritinib in this Discussion).

ALK Rearrangements

Crizotinib yields very high response rates (>60%) when used in patients with advanced NSCLC who have ALK rearrangements, including those with brain metastases. Patients whose disease responds to crizotinib may have rapid improvement in symptoms; median time to progression on crizotinib is about 7 months to 1 year. Crizotinib has relatively few side effects (eg, eye disorders, edema, transient changes in renal function). However, some patients have had pneumonitis; crizotinib should be discontinued in these patients. Patients who do not tolerate crizotinib may be switched to alectinib or ceritinib (if either not previously given), or brigatinib unless an adverse side effect requiring discontinuation has occurred (eg, pneumonitis). Randomized phase 3 trials have compared crizotinib with first-line therapy (PROFILE 1014) and with subsequent chemotherapy (PROFILE 1007). First-line therapy with crizotinib improved PFS, response rate (74% vs. 45%; \(P < .001 \)), lung cancer symptoms, and quality of life when compared with chemotherapy (pemetrexed with either cisplatin or carboplatin).

The NCCN Panel recommends first-line therapy with crizotinib (category 1) based on this phase 3 trial and the FDA approval. Crizotinib may also be continued for patients with ALK rearrangements who have progressed if patients do not have multiple systemic symptomatic lesions. Subsequent therapy with crizotinib improved PFS (7.7 vs. 3.0 months; \(P < .001 \)) and response rate (65% vs. 20%; \(P < .001 \)) when compared with single-agent therapy (either docetaxel or pemetrexed) in patients with ALK-positive NSCLC who had progressed after first-line chemotherapy. Based on this trial, crizotinib is recommended as subsequent therapy in patients with ALK-positive disease.

ROS1 Rearrangements

Crizotinib is also very effective for patients with ROS1 rearrangements with response rates of about 70% to 80% including complete responses (see ROS1 Rearrangements in this Discussion). In 50 patients with advanced NSCLC who were positive for ROS1 rearrangements, crizotinib yielded an objective response rate of 72% (95% CI, 58–84); there were 3 complete responses and 33 partial responses. The median duration of response was 17.6 months (95% CI, 14.5 to not reached), and the median PFS was 19.2 months (95% CI, 14.4 to not reached). The safety profile of crizotinib was similar to the safety seen in patients with ALK-rearranged NSCLC. A retrospective European study in patients (n = 30 evaluable) with stage IV NSCLC and ROS1 rearrangements also assessed crizotinib. There were 5 complete responses (overall response rate, 80%; disease control rate, 86.7%). The median PFS was 9.1 months. Many patients (n = 26) received pemetrexed (either alone or in combination with platinum and either before or after crizotinib) and had a response rate of 57.7% and a median PFS of 7.2 months.

The NCCN Panel recommends ROS1 testing based on data showing the efficacy of crizotinib for patients with ROS1 rearrangements and on the FDA approval (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). For the 2018 update (Version 1), the NCCN Panel voted that crizotinib is the preferred agent for first-line therapy in patients with ROS1 rearrangements, when compared with ceritinib, based on the trial data and the FDA approval. Alectinib is not recommended in patients with ROS1 rearrangements whose disease becomes resistant to crizotinib.
Ceritinib

ALK Rearrangements

Ceritinib is an oral TKI that inhibits ALK and ROS1 rearrangements. A recent phase 3 trial assessed ceritinib versus platinum-based chemotherapy as first-line therapy for patients with ALK-positive metastatic NSCLC. PFS was improved when using ceritinib when compared with platinum-based chemotherapy; the median PFS was 16.6 months (95% CI, 12.6–27.2) for ceritinib and 8.1 months (CI, 5.8–11.1) for chemotherapy (HR, 0.55 [95% CI, 0.42–0.73]; \(P < .00001 \)). For ceritinib, common adverse events included diarrhea (85% [160/189] of patients), nausea (69% [130/189]), vomiting (66% [125/189]), and an increase in alanine aminotransferase (60% [114/189]). For chemotherapy, common adverse events included nausea (55% [97/175 patients], vomiting (36% [63/175]), and anemia (35% [62/175]). The NCCN Panel recommends (category 1) ceritinib as first-line therapy for patients with ALK-positive metastatic NSCLC based on this phase 3 trial and FDA approval. However, the NCCN Panel voted that alectinib (category 1) is the preferred agent for first-line therapy for patients with ALK-rearranged NSCLC who have progressed on or are intolerant to crizotinib. The approval is based on an expanded phase 1 study (ASCEND-1) showing overall response rates of 56% to ceritinib in patients (92/163) who had previously received crizotinib; the median duration of response was 8.3 months (6.8–9.7). Common grade 3 to 4 adverse events included increased alanine aminotransferase (73 [30%] patients) and increased aspartate aminotransferase (25 [10%]). Some patients with CNS lesions responded to ceritinib. Based on the study and the FDA approval, the NCCN Panel recommends ceritinib as subsequent therapy for patients with ALK-positive NSCLC who have progressed after crizotinib. Patients who do not tolerate crizotinib may be switched to alectinib or ceritinib (if not previously given), or brigatinib.

A recent phase 2 trial assessed ceritinib as first-line therapy in patients (n = 28 evaluable) with NSCLC and ROS1 rearrangements. One complete response and 19 partial responses (overall response rate, 62% [95% CI, 45%–77%]) were reported in patients receiving ceritinib. PFS was 19.3 months (95% CI, 1–37 months) for crizotinib-naive patients and 9.3 months (95% CI, 0–22 months) for all patients. The median overall survival was 24 months (95% CI, 5–43 months). For the 2018 update (Version 1), the NCCN Panel now recommends ceritinib (category 2A) for patients with ROS1-positive NSCLC based on this trial. However, the NCCN Panel voted that crizotinib is the preferred agent for first-line therapy for patients with ROS1 rearrangements for the 2018 update (Version 1) as previously mentioned (see Crizotinib in this Discussion).
duration of response was 9.7 months (95% CI, 7.1–11.1 months). The intracranial overall response rate was 45.0% (95% CI, 23.1%–68.5%).

ROS1 Rearrangements

Ceritinib is an oral TKI that inhibits ALK and ROS1 rearrangements. A recent phase 2 trial assessed ceritinib as first-line therapy in patients (n = 28 evaluable) with NSCLC and ROS1 rearrangements. One complete response and 19 partial responses (overall response rate, 62% [95% CI, 45%–77%]) were reported in patients receiving ceritinib. PFS was 19.3 months (95% CI, 1–37 months) for crizotinib-naïve patients and 9.3 months (95% CI, 0–22 months) for all patients. The median overall survival was 24 months (95% CI, 5–43 months). For the 2018 update (Version 1), the NCCN Panel recommends ceritinib (category 2A) for patients with ROS1 positive advanced NSCLC based on this trial. However, the NCCN Panel voted that crizotinib is the preferred agent for first-line therapy for patients with advanced NSCLC and ROS1 rearrangements for the 2018 update (Version 1) as previously mentioned (see Crizotinib in this Discussion).

Alectinib

First-Line Therapy

Alectinib is an oral TKI that inhibits ALK and RET rearrangements but not MET or ROS1 rearrangements. The ALEX phase 3 trial assessed first-line therapy with alectinib versus crizotinib in 303 patients with ALK-positive advanced NSCLC including those with asymptomatic CNS disease. Disease progression or death occurred in fewer patients receiving alectinib (41% [62/152]; median follow-up of 18.6 months) when compared with crizotinib (68% [102/151]; median follow-up of 17.6 months). The HR was 0.47 (95% CI, 0.34–0.65); P < .001) for disease progression or death. PFS was significantly increased with alectinib (68.4% [95% CI, 61.0–75.9] versus crizotinib (48.7% [95% CI, 40.4–56.9]). The median PFS was not reached for alectinib (95% CI, 17.7 months–not estimable) when compared with crizotinib at 11.1 months (95% CI, 9.1–13.1). Fewer patients receiving alectinib had CNS progression (12% [18/152] vs. crizotinib (45% [68/151]). Response rates were 83% (126/152) in the alectinib group versus 75% (114/151) in the crizotinib group (P = .09). Patients receiving alectinib had fewer grade 3 to 5 adverse events when compared with crizotinib (41% [63/152] vs. 50% [75/151], respectively) even though patients received alectinib for a longer duration than crizotinib (median, 17.9 vs. 10.7 months). There were also fewer deaths in the alectinib arm (3.3% [5/152]) versus the crizotinib arm (4.6% [7/151]); 2 treatment-related deaths were reported in the crizotinib arm and none in the alectinib arm.

The J-ALEX phase 3 randomized trial assessed first-line therapy with alectinib versus crizotinib in 207 Japanese patients with ALK-positive advanced NSCLC. The data showed that median PFS had not yet been reached with alectinib (95% CI, 20.3 months–not estimated) versus 10.2 months (95% CI, 8.2–12.0) with crizotinib (HR, 0.34 [99.7% CI, 0.17–0.71], stratified log-rank P < .0001). Grade 3 or 4 adverse events were less frequent with alectinib (26% [27/103]) when compared with crizotinib (52% [54/104]; adverse events did not lead to death in either group. Fewer patients stopped taking alectinib (9%) because of an adverse event when compared with crizotinib (20%).

The NCCN Panel recommends alectinib as first-line therapy (category 1) for patients with ALK-positive metastatic NSCLC based on these 2 randomized phase 3 trials and recent FDA approval. Panel members voted that alectinib is the preferred agent for first-line therapy for patients with metastatic NSCLC who are positive for ALK gene rearrangements based on these trials. Crizotinib and ceritinib are also recommended (category 1) as first-line therapy in patients with ALK-positive NSCLC (see Crizotinib and Ceritinib in this Discussion).
Alectinib is approved by the FDA for patients with ALK-positive metastatic NSCLC who have progressed on or are intolerant to crizotinib. The FDA approval is based on phase 2 trials showing overall response rates of 48% to 50% to alectinib in patients who had previously received crizotinib. In the larger trial (138 patients) by Ou et al, patients on alectinib had a response rate of 50% (95% CI, 41%–59%), and median duration of response of 11.2 months (95% CI, 9.6 months to not reached). For central nervous system (CNS) disease, the control rate was 83% (95% CI, 74%–91%) and the median duration of response was 10.3 months (95% CI, 7.6–11.2 months). Of 84 patients with baseline CNS metastases, 23 (27%) had a complete CNS response to alectinib. Of 23 patients with baseline CNS metastases and no previous brain RT, 10 (43%) had a complete CNS response to alectinib. Most adverse events were only grade 1 to 2 (constipation, fatigue, and peripheral edema); 4 patients (3%) had grade 3 dyspnea. One death due to intestinal perforation may have been related to alectinib. Based on these trials and the FDA approval, the NCCN Panel recommends alectinib as subsequent therapy for patients with ALK-positive NSCLC who have progressed after crizotinib; patients who do not tolerate crizotinib may be switched to alectinib or ceritinib (if not previously given), or brigatinib.

Dabrafenib and Trametinib
The combination regimen of dabrafenib/trametinib is approved by the FDA for patients with metastatic NSCLC and BRAF V600E mutations. Dabrafenib is an oral TKI that inhibits BRAF V600E mutations; trametinib is an oral TKI that inhibits BRAF V600E mutations and MEK. Both agents inhibit different kinases in the RAS/RAF/MEK/ERK pathway. A phase 2 study assessed the dabrafenib/trametinib regimen in 57 patients with advanced NSCLC and BRAF V600E mutations who had progressed on chemotherapy. Patients had a response rate of 63% (36/57) with dabrafenib/trametinib; however, considerable toxicity was reported. PFS was 9.7 months (6.9–19.6). Serious adverse events occurred in 56% (32/57) of patients including pyrexia, anemia, confusional state, hemoptysis, hypercalcemia, and cutaneous squamous cell carcinoma. Grade 3 to 4 adverse events included neutropenia in 9% of patients (5/57), hyponatremia in 7% (4/57), and anemia in 5% (3/57). Four patients died during the study, but these metastases (71% and 67%, respectively). The intracranial overall response rates were 42% (11/26) and 67% (12/18), respectively, in patients with measureable brain metastases. The median PFS was 9.2 months (95% CI, 7.4–15.6) and 12.9 months (95% CI, 11.1–not reached), respectively. Grade 3 or higher adverse events included hypertension (6% and 6%, respectively) and pneumonia (3% and 5%, respectively). Patients receiving brigatinib should be carefully monitored for respiratory symptoms, especially during the first week of treatment. The NCCN Panel recommends brigatinib (category 2A) as subsequent therapy for patients with ALK-positive NSCLC who have progressed after crizotinib based on this trial and the FDA approval. Patients who do not tolerate crizotinib may be switched to alectinib or ceritinib (if not previously given), or brigatinib.

Brigatinib
Brigatinib is an oral TKI that inhibits ALK rearrangements; it is approved by the FDA for patients with ALK-positive metastatic NSCLC who have progressed on or are intolerant to crizotinib. The approval is based on data from a phase 2 trial (ALTA) assessing 2 different doses of brigatinib: 90 mg (arm A) or 180 mg (arm B) every day. The overall response rates were 45% (97% CI, 34%–56%) and 54% (97% CI, 43%–65%) in arms A and B, respectively. Many patients had brain metastases (71% and 67%, respectively). The intracranial overall response rates were 42% (11/26) and 67% (12/18), respectively, in patients with measureable brain metastases. The median PFS was 9.2 months (95% CI, 7.4–15.6) and 12.9 months (95% CI, 11.1–not reached), respectively. Grade 3 or higher adverse events included hypertension (6% and 6%, respectively) and pneumonia (3% and 5%, respectively). Patients receiving brigatinib should be carefully monitored for respiratory symptoms, especially during the first week of treatment. The NCCN Panel recommends brigatinib (category 2A) as subsequent therapy for patients with ALK-positive NSCLC who have progressed after crizotinib based on this trial and the FDA approval. Patients who do not tolerate crizotinib may be switched to alectinib or ceritinib (if not previously given), or brigatinib.
deaths were not felt to be related to treatment (deaths were due to retroperitoneal hemorrhage, subarachnoid hemorrhage, respiratory distress, or severe disease progression). Preliminary data from an updated analysis of this phase 2 trial reported that patients receiving dabrafenib/trametinib had a median overall survival of 18.2 months (95% CI, 14.3–not estimable).\(^6\)

A recent phase 2 trial assessed first-line combination therapy with dabrafenib/trametinib for 36 patients with metastatic NSCLC and \textit{BRAF}\(^{V600E}\) mutations.\(^7\) The overall response rate was 64\% (23/36; 95\% CI, 46–79); there were 2 complete responses. The median PFS was 10.9 months (95\% CI, 7.0–16.6). Many patients (69\% [25/36]) had one or more grade 3 or 4 adverse events. Serious adverse events included alanine aminotransferase increase (14\% [5/36]), pyrexia (11\% [4/36]), aspartate aminotransferase increase (8\% [3/36]), and ejection fraction decrease (8\% [3/36]).

The NCCN Panel recommends combination therapy with dabrafenib/trametinib for patients with metastatic NSCLC and \textit{BRAF}\(^{V600E}\) mutations based on these trials and the FDA approval. Doublet chemotherapy regimens are also recommended for patients with \textit{BRAF}\(^{V600E}\) mutations; the same initial cytotoxic regimens used for patients with metastatic NSCLC may be used (eg, carboplatin/paclitaxel). Single-agent therapy with dabrafenib or vemurafenib is also an option for patients with \textit{BRAF}\(^{V600E}\) mutations who do not tolerate combination therapy with dabrafenib/trametinib.\(^1,4,14,4,6\)

\textbf{EGFR Inhibitor}

\textbf{Cetuximab}

Cetuximab is a monoclonal antibody that targets EGFR. A large phase 3 randomized trial (FLEX) assessed cisplatin/vinorelbine with (or without) cetuximab for patients with advanced NSCLC; most patients had stage IV disease.\(^8\) Adding cetuximab was reported to slightly increase overall survival (11.3 vs. 10.1 months, HR for death, 0.87 [95\% CI, 0.762–0.996]; \(P = .044\)). Patients receiving cetuximab had increased grade 4 events versus control (62\% vs. 52\%, \(P < .01\)); cetuximab was also associated with grade 2 acne-like rash.

The cetuximab/cisplatin/vinorelbine regimen is not recommended in the NCCN Guidelines. The benefits of this cetuximab-based regimen are very slight, it is a difficult regimen to administer, and patients have poorer tolerance for this regimen when compared with other regimens; for example, almost 40\% of patients have grade 4 neutropenia.\(^5\) Patients may also have comorbid conditions that prevent them from receiving cisplatin such as poor kidney function. Cisplatin/vinorelbine with (or without) cetuximab is generally not used in the United States because of concerns about toxicity.\(^5,5,6\) Some oncologists feel that although the FLEX trial results were reported to be statistically significant they were not clinically significant.\(^5\) The NCCN Panel recently deleted the cisplatin/vinorelbine and carboplatin/vinorelbine regimens from the list of recommended cytotoxic therapy regimens for metastatic NSCLC with all histologies.

\textbf{Immunotherapies}

Human immune-checkpoint–inhibitor antibodies inhibit the PD-1 receptor or PD-L1, which improves antitumor immunity; PD-1 receptors are expressed on activated cytotoxic T cells.\(^26,26\) Nivolumab and pembrolizumab inhibit PD-1 receptors.\(^26,26\) Atezolizumab and durvalumab inhibit PD-L1.\(^26,26\) Pembrolizumab, nivolumab, and atezolizumab are recommended for select patients with metastatic NSCLC (see \textit{Pembrolizumab, Nivolumab, and Atezolizumab} in this Discussion). Durvalumab is recommended (category 2A) as consolidation therapy by the NCCN Panel for patients with stage III
NCCN Guidelines Version 2.2018
Non-Small Cell Lung Cancer

NSCLC who have not progressed after definitive concurrent chemoradiation; appropriate use and clinical trial data for durvalumab are described in greater detail elsewhere (see *Durvalumab* in this Discussion). Immune checkpoint inhibitors are associated with a delay in benefit when compared with targeted therapy or cytotoxic chemotherapy.

Checkpoint inhibitors are associated with unique immune-mediated adverse events that are not seen with traditional cytotoxic chemotherapy (eg, endocrine disorders); therefore, health care providers should be aware of the spectrum of potential immune-mediated adverse events, know how to manage the adverse events, and educate their patients about possible side effects. Nivolumab, pembrolizumab, and atezolizumab should be discontinued for patients with severe or life-threatening pneumonitis and should be withheld or discontinued for other severe or life-threatening immune-mediated adverse events when indicated (see prescribing information). Pseudoprogression has been reported; therefore, traditional RECIST criteria may not be applicable. Based on data in the second-line setting, immunotherapy appears to be less effective in patients whose tumors have an actionable mutation (such as *EGFR* mutations, *ALK* rearrangements) regardless of PD-L1 expression levels. 261,264,271,272

Nivolumab

The NCCN Panel recommends nivolumab (category 1) as subsequent therapy for patients with metastatic nonsquamous or squamous NSCLC who have progressed on or after first-line chemotherapy based on data from two phase 3 randomized trials (CheckMate-057, CheckMate-017) and FDA approvals. 261,264,674,675 The NCCN Panel recommends immune checkpoint inhibitors as preferred agents for subsequent therapy based on improved overall survival rates, longer duration of response, and fewer adverse events when compared with cytotoxic chemotherapy. 261,264,271,676

For patients with metastatic nonsquamous NSCLC, the category 1 recommendation for subsequent therapy with nivolumab is based on data from a phase 3 randomized trial (CheckMate-057) and FDA approval. For patients receiving nivolumab in the CheckMate-057 trial, median overall survival was 12.2 months compared with 9.4 months for docetaxel (HR, 0.73; 95% CI, 0.59–0.89; *P* = .002). 261 The median duration of response was 17.2 months with nivolumab compared with 5.6 months for docetaxel. At 18 months, the overall survival rate was 39% (95% CI, 34%–45%) with nivolumab compared with 23% (95% CI, 19%–28%) with docetaxel. Fewer grade 3 to 5 adverse events were reported for nivolumab (10%) when compared with docetaxel (54%). Although many patients with metastatic nonsquamous NSCLC benefit from nivolumab, those whose tumors have PD-L1 staining of 1% to 10% or more have overall survival of 17 to 19 months compared with 8 to 9 months for docetaxel. For patients who did not have PD-L1 expression, there was no difference in overall survival for nivolumab versus docetaxel; however, nivolumab was associated with a longer duration of response and fewer side effects.

To help clinicians determine which patients with nonsquamous NSCLC may benefit most from treatment with nivolumab, the FDA has approved a complementary diagnostic biomarker test to assess for PD-L1 protein expression. Testing for PD-L1 is not required for prescribing nivolumab but may provide useful information. 275 Current or former smoking status correlated with the response rate to immune checkpoint inhibitors. 261 Data suggest that mismatch repair deficiency is associated with response to immune checkpoint inhibitors. 678,679
The NCCN Panel also recommends (category 1) nivolumab as subsequent therapy for patients with metastatic squamous cell NSCLC who have progressed on or after first-line chemotherapy based on data from a phase 3 randomized trial (CheckMate-017), and FDA approval. In the CheckMate-017 trial, the median overall survival was 9.2 months with nivolumab compared with 6.0 months for docetaxel. Patients had a response rate of 20% with nivolumab compared with 9% for docetaxel ($P = .008$). PD-L1 expression was not associated with response to nivolumab in patients with squamous cell NSCLC. There were fewer grade 3 to 4 adverse events with nivolumab (7%) when compared with docetaxel (55%). No patients died in the nivolumab arm versus 3 deaths in the docetaxel arm.

In a recent long-term analysis of both trials (CheckMate-057 and CheckMate-017), 2-year survival and durable responses were improved in patients with advanced NSCLC receiving nivolumab when compared with docetaxel. For patients with nonsquamous NSCLC, 2-year survival was 29% (95% CI, 24%–34%) with nivolumab versus 16% (95% CI, 12%–20%) with docetaxel. For those with squamous NSCLC, 2-year survival was 23% (95% CI, 16%–30%) with nivolumab versus 8% (95% CI, 4%–13%) with docetaxel. Fewer severe treatment-related adverse events were reported with nivolumab compared with docetaxel (grade 3–4, 10% vs. 55%).

Immune-related adverse events, such as pneumonitis, may occur with nivolumab. Intravenous high-dose corticosteroids should be administered based on the severity of the reaction for patients with immune-mediated adverse events. Nivolumab should be discontinued for patients with severe or life-threatening pneumonitis and should be withheld or discontinued for other severe or life-threatening immune-mediated adverse events when indicated (see prescribing information).

Pembrolizumab

First-Line Therapy

As previously mentioned, human immune-checkpoint–inhibitor antibodies inhibit the PD-1 receptor or PD-L1, which improves antitumor immunity; PD-1 receptors are expressed on activated cytotoxic T cells. Pembrolizumab inhibits the PD-1 receptor. Testing for PD-L1 expression levels is required before prescribing pembrolizumab. The FDA approved single-agent pembrolizumab for first-line therapy based on this trial. At 6 months, the rate of overall survival was 80.2% in the pembrolizumab group versus 72.4% in the chemotherapy group (HR for death, 0.60; 95% CI, 0.41–0.89; $P = .005$). Responses were higher for pembrolizumab than for chemotherapy (44.8% vs. 27.8%). There were fewer severe treatment-related adverse events (grades 3–5) in patients receiving pembrolizumab compared with those receiving chemotherapy (26.6% vs. 53.3%).

The NCCN Panel recommends (category 2A) IHC testing for PD-L1 expression before first-line treatment in patients with metastatic NSCLC with negative or unknown tests results for EGFR mutations, BRAF V600E mutations, ALK rearrangements, and ROS1 rearrangements. The FDA has approved a companion diagnostic biomarker test for assessing PD-L1 expression and determining which patients are eligible for pembrolizumab therapy. Although it is not an optimal biomarker, PD-L1 expression is currently the best available biomarker...
to assess whether patients are candidates for pembrolizumab. PD-L1 expression is continuously variable and dynamic; thus, a cutoff value for a positive result is artificial. Patients with PD-L1 expression levels just below and just above 50% will probably have similar responses. Unique anti-PD-L1 IHC assays are being developed for each one of the different immune checkpoint inhibitors currently in clinical trials. The definition of a positive PD-L1 test result varies depending on which biomarker assay is used.

Ideally, PD-L1 expression levels are assessed in patients with negative or unknown test results for EGFR mutations, BRAF V600E mutations, ALK rearrangements, or ROS1 rearrangements. Every effort needs to be made to establish the genetic alteration status. If the risk of biopsy is high and genetic alteration testing is not feasible and therefore technically unknown, then it is appropriate to test for PD-L1 expression levels. Of note, there are blood assays to evaluate for EGFR mutations and ALK rearrangements although they are less sensitive than tissue assays.

The NCCN Panel recommends first-line pembrolizumab/carboplatin/pemetrexed (category 2A) for patients with advanced nonsquamous NSCLC (ie, adenocarcinoma, large cell carcinoma) or NSCLC NOS based on a phase 2 study in 123 patients (Keynote-021) and on FDA approval. The objective response rate was improved in patients receiving pembrolizumab/chemotherapy (55% [95% CI, 42–68]) when compared with those receiving chemotherapy alone (29% [95% CI, 18–41]; P = .0016). Positive PD-L1 expression levels were not required for treatment; however, patients with PD-L1 expression of 50% or more who received pembrolizumab/chemotherapy had higher response rates (80% [16/20]) when compared with chemotherapy alone (35% [6/17]). There were no complete responses. The median PFS was 13 months (95% CI, 8.3–not estimable) for those receiving pembrolizumab/chemotherapy versus 8.9 months (95% CI, 4.4–10.3) for those receiving chemotherapy alone. Overall survival rates were similar in both groups after 10.6 months of follow-up.

Treatment-related adverse events of grade 3 or worse were 39% (23/59) in the pembrolizumab/chemotherapy group versus 26% (16/62) in the chemotherapy alone group. Often patients received pembrolizumab maintenance therapy for 24 months. Patients also received pemetrexed maintenance therapy (85% [50/59] vs. 69% [43/62], respectively).

Subsequent Therapy

The NCCN Panel also recommends pembrolizumab (category 1) as subsequent therapy for patients with metastatic nonsquamous or squamous NSCLC and PD-L1 expression levels of 1% or more based on a randomized phase 2/3 trial (KEYNOTE-010), and FDA approval. In addition, the NCCN Panel recommends immune checkpoint inhibitors as preferred agents for subsequent therapy. Testing for PD-L1 expression levels is required before prescribing pembrolizumab. The FDA has approved pembrolizumab as subsequent therapy for patients with metastatic NSCLC whose disease has progressed after platinum-based chemotherapy if their tumors express PD-L1. Other immunotherapeutic agents are being investigated.

A randomized phase 2/3 trial (KEYNOTE-010) assessed pembrolizumab in patients with previously treated advanced nonsquamous and squamous NSCLC who were PD-L1 positive (≥1%); most patients were current or former smokers. There were 3 arms in this trial: pembrolizumab at 2 mg/kg, pembrolizumab at 10 mg/kg, and docetaxel at 75 mg/m² every 3 weeks. The median overall survival was 10.4 months for the lower dose of pembrolizumab, 12.7 months for the...
higher dose, and 8.5 months for docetaxel. Overall survival was significantly longer for both doses of pembrolizumab when compared with docetaxel (pembrolizumab 2 mg/kg: HR, 0.71; 95% CI, 0.58–0.88; \(P = .0008 \)) (pembrolizumab 10 mg/kg: HR, 0.61; CI, 0.49–0.75; \(P < .0001 \)). For those patients with at least 50% PD-L1 expression in tumor cells, overall survival was also significantly longer at either dose of pembrolizumab when compared with docetaxel (pembrolizumab 2 mg/kg: 14.9 vs. 8.2 months; HR, 0.54; 95% CI, 0.38–0.77; \(P = .0002 \)) (pembrolizumab 10 mg/kg: 17.3 vs. 8.2 months; HR, 0.50; CI, 0.36–0.70; \(P < .0001 \)). When compared with docetaxel, there were fewer grade 3 to 5 treatment-related adverse events at either dose of pembrolizumab (pembrolizumab 2 mg/kg: 13% [43/339] of patients, pembrolizumab 10 mg/kg: 16% [55/343], and docetaxel: 35% [109/309]). A total of 6 treatment-related deaths occurred in patients receiving pembrolizumab (3 at each dose) and 5 treatment-related deaths occurred in the docetaxel arm.

Similar to nivolumab and atezolizumab, immune-mediated adverse events may also occur with pembrolizumab.\(^{681,683,692}\) For patients with immune-mediated adverse events, intravenous high-dose corticosteroids should be administered based on the severity of the reaction. Pembrolizumab should also be discontinued for patients with severe or life-threatening pneumonitis and should be withheld or discontinued for other severe or life-threatening immune-mediated adverse events when indicated (see prescribing information).

Atezolizumab

The NCCN Panel recommends atezolizumab (category 1) as subsequent therapy for patients with metastatic nonsquamous or squamous cell NSCLC based on a recent phase 3 trial and FDA approval.\(^{267,693,694}\) Testing for PD-L1 expression levels is not required for prescribing atezolizumab but may provide useful information. Human immune-checkpoint–inhibitor antibodies inhibit the PD-1 receptor or PD-L1, which improves antitumor immunity; PD-1 receptors are expressed on activated cytotoxic T cells.\(^{262,263}\) Atezolizumab inhibits PD-L1.\(^{267}\)

A phase 3 randomized trial (OAK) assessed atezolizumab versus docetaxel alone in patients with metastatic NSCLC who had progressed during or after systemic therapy.\(^{693,694}\) Most patients were current or former smokers and had received platinum-based chemotherapy; few patients (10%) had \(EGFR \) mutations and \(ALK \) rearrangements were not reported.\(^{693,694}\) Data show that patients with nonsquamous NSCLC who received atezolizumab had improved overall survival when compared with those receiving docetaxel (15.6 vs. 11.2 months; HR, 0.73 [0.60–0.89]; \(P = .0015 \)). Overall survival was only slightly improved in patients with squamous cell NSCLC receiving atezolizumab versus docetaxel (8.9 vs. 7.7 months; HR, 0.73 [0.54–0.98]; \(P = .038 \)); there were fewer patients in the squamous group when compared with the nonsquamous group (222 vs. 628). There were fewer treatment-related severe adverse events (grades 3-4) for atezolizumab versus docetaxel (15% vs. 43% [90/609 vs. 247/578]).

Similar to nivolumab and pembrolizumab, immune-mediated adverse events may also occur with atezolizumab.\(^{693}\) For patients with immune-mediated adverse events, intravenous high-dose corticosteroids should be administered based on the severity of the reaction. Atezolizumab should also be permanently discontinued for patients with severe or life-threatening pneumonitis and should be discontinued for other severe or life-threatening immune-mediated adverse events when indicated (see prescribing information).
Maintenance Therapy

Maintenance therapy refers to systemic therapy that may be given for patients with advanced NSCLC after 4 to 6 cycles of first-line chemotherapy. Patients are only candidates for maintenance therapy if their tumors have responded to their previous treatment (i.e., tumor response) or have stable disease and their tumors have not progressed. **Continuation maintenance** therapy refers to the use of at least one of the agents that was given in the first-line regimen. **Switch maintenance** therapy refers to the initiation of a different agent that was not included as part of the first-line regimen. Selection of appropriate maintenance therapy depends on several factors (e.g., histologic type, presence of mutations or gene rearrangements, PS). Maintenance therapy is an option in the NCCN Guidelines for select patients with tumor response or stable disease and is not recommended for all patients (e.g., not recommended for PS 3–4, those with progression); close observation (category 2A) is also a valid treatment option (see the NCCN Guidelines for NSCLC). 696

Continuation Maintenance Therapy

For continuation maintenance therapy, select agents (which were initially given in combination with conventional chemotherapy) may be continued until evidence of disease progression or unacceptable toxicity based on the design of the clinical trials that led to their approval. Single-agent bevacizumab (category 1) may be continued beyond 4 to 6 cycles of initial therapy (i.e., platinum-doublet chemotherapy given with bevacizumab) in patients with nonsquamous NSCLC and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown. 697,699 A phase 3 randomized trial (PARAMOUNT) found that continuation maintenance therapy with pemetrexed slightly increased PFS when compared with placebo (4.1 vs. 2.8 months). 699 Results show that continuation maintenance therapy with pemetrexed also improves overall survival (13.9 vs. 11.0 months). 700 Based on the trial and the FDA approval, the NCCN Panel recommends single-agent pemetrexed as continuation maintenance therapy (category 1) in patients with nonsquamous NSCLC and negative or unknown test results for mutations, rearrangements, and with PD-L1 expression less than 50% or unknown.

Continuation maintenance therapy using bevacizumab/pemetrexed is also an option in patients with nonsquamous NSCLC and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown; this is a category 2A recommendation. Data from the POINTBREAK study reported a very slight improvement in PFS (6 vs. 5.6 months) when comparing bevacizumab/pemetrexed versus bevacizumab alone as maintenance therapy; the initial regimens were either bevacizumab/carboplatin/pemetrexed or bevacizumab/carboplatin/paclitaxel. 584 It is important to note that the pemetrexed-based arm was associated with less toxicity (e.g., less neurotoxicity, less neutropenia, less hair loss) than the paclitaxel-based arm. When using bevacizumab/pemetrexed versus bevacizumab alone as maintenance therapy, data from the AVAPERL study showed a 3.7-month increase in PFS (7.4 vs. 3.7 months); the initial regimen was bevacizumab/cisplatin/pemetrexed. 701,702

A phase 3 randomized trial compared using maintenance therapy with either gemcitabine or erlotinib after first-line therapy with cisplatin-gemcitabine. Continuation maintenance therapy with
single-agent gemcitabine was reported to increase PFS to a greater extent (3.8 months) than switch maintenance therapy with erlotinib (2.9 months) when compared with observation (1.9 months).703,704 Another phase 3 randomized trial assessed continuation maintenance therapy with gemcitabine versus best supportive care after an initial regimen of cisplatin/gemcitabine.705 The data showed a slight difference in PFS but no difference in overall survival. The NCCN Guidelines recommend using gemcitabine (category 2B) as continuation maintenance therapy regardless of histology in patients without ALK or ROS1 rearrangements, sensitizing EGFR mutations, BRAF V600E mutations, or PD-L1 expression.

Use of continuation maintenance therapy depends on several factors, such as whether the patient had minimal toxicity during treatment. A drug vacation may be more appropriate for some patients.582 Some clinicians feel that continuation maintenance therapy is only appropriate for select patients, because it has not been shown to improve overall survival or quality of life, although it has been shown to improve PFS.582,706 In addition, maintenance therapy has not been shown to be superior to subsequent therapy, which is initiated at disease progression. A phase 3 randomized trial suggests that conventional cytotoxic agents should not be continued beyond 4 to 6 cycles of therapy; however, many patients assigned to a longer duration of therapy did not receive the planned number of cycles (see Maintenance Therapy in this Discussion).706,707

Switch Maintenance Therapy

Issues have been raised about switch maintenance therapy, including the design of the trials, modest survival benefits, quality of life, and toxicity.582,708 For squamous cell NSCLC, all maintenance therapy is a category 2B recommendation. Two phase 3 randomized trials reported a benefit in PFS and overall survival with the initiation of pemetrexed or erlotinib after first-line chemotherapy (4–6 cycles) in patients with nonsquamous NSCLC and no apparent disease progression.709,710 Switch maintenance therapy with pemetrexed is recommended in patients with nonsquamous cell carcinoma and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown.710 The FDA has approved maintenance therapy with pemetrexed.711

For the 2018 update (Version 1), the NCCN Panel revised the recommendation for switch maintenance therapy with pemetrexed to category 2A (from 2B) based on clinical experience and reassessment of trial data (see Maintenance Therapy in this Discussion).710 The NCCN Panel recently deleted the recommendation for erlotinib as switch maintenance therapy (and as subsequent therapy) for patients with nonsquamous NSCLC and good PS but without EGFR mutations based on results from a randomized trial (IUNO) and revised indication from the FDA.712 The NCCN Panel also deleted the recommendations for switch maintenance therapy with erlotinib in patients with squamous cell NSCLC, because overall survival and quality of life were not improved.703,713 A phase 3 trial assessed switch maintenance therapy with docetaxel given either immediately after chemotherapy or delayed until progression.714 Switch maintenance therapy with docetaxel is a category 2B recommendation in the NCCN Guidelines for patients with squamous cell carcinoma, because many patients in the delayed chemotherapy arm did not receive docetaxel.

Clinical Evaluation

The workup and evaluation of incidental lung nodules that are detected on imaging for other conditions is described in the NSCLC algorithm (see Diagnostic Evaluation of Lung Nodules in this Discussion and the
NCCN Guidelines for NSCLC. For the 2018 update (Version 1), the NCCN Panel revised the diagnostic algorithms for incidental solid and subsolid lung nodules detected on chest CT based on the updated Fleischner criteria (see the NCCN Guidelines for NSCLC). The cutoff thresholds have been increased to 6 mm for a positive scan result. As previously described, low-dose CT screening is recommended for asymptomatic select patients who are at high risk for lung cancer and management of these nodules is described elsewhere (see the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).

After patients are confirmed to have NSCLC based on a pathologic diagnosis, a clinical evaluation needs to be done (see the NCCN Guidelines for NSCLC). In patients with symptoms, the clinical stage is initially determined from disease history (ie, cough, dyspnea, chest pain, weight loss) and physical examination together with a limited battery of tests (see Evaluation and Clinical Stage in the NCCN Guidelines for NSCLC). The NCCN Panel also recommends that smoking cessation advice, counseling, and pharmacotherapy be provided to patients. After the clinical stage is determined, the patient is assigned to one of the pathways that are defined by the stage, specific subdivision of the particular stage, and location of the tumor. Note that for some patients, diagnosis, staging, and surgical resection are done during the same operative procedure. A multidisciplinary evaluation should be done before treatment.

Additional Pretreatment Evaluation
As previously noted, evaluation of the mediastinal nodes is a key step in the further staging of the patient. FDG PET/CT scans can be used as an initial assessment of the hilar and mediastinal nodes (ie, to determine whether the N1, N2, or N3 nodes are positive for cancer, which is a key determinant of stage II and stage III disease); however, CT scans have known limitations for evaluating the extent of lymph node involvement in lung cancer. When compared with noninvasive staging methods (EBUS, EUS), surgical staging with mediastinoscopy is more appropriate for certain settings when evaluating mediastinal nodes; however, clinicians use both methods when staging patients. Thus, mediastinoscopy is encouraged as part of the initial evaluation, particularly if the results of imaging are not conclusive and the probability of mediastinal involvement is high (based on tumor size and location). Therefore, mediastinoscopy is appropriate for patients with T2 to T3 lesions even if the FDG PET/CT scan does not suggest mediastinal node involvement.

Mediastinoscopy may also be appropriate to confirm mediastinal node involvement in patients with a positive FDG PET/CT scan. In patients with solid tumors less than 1 cm or those with purely nonsolid tumors (ie, GGOs) less than 3 cm, pathologic mediastinal lymph node evaluation is optional if the nodes are FDG-PET/CT negative because there is a low likelihood of positive mediastinal nodes. Mediastinal evaluation can be considered in patients with clinical stage 1A disease (T1ab, N0). In patients with peripheral T2a, central T1ab, or T2a lesions with negative FDG PET/CT scans, the risk for mediastinal lymph node involvement is higher and mediastinoscopy and/or EUS-FNA and EBUS-TBNA are recommended. Dilemmas et al have reported a selective mediastinoscopy strategy, proceeding straight to thoracotomy without mediastinoscopy for T1 peripheral tumors without enlarged mediastinal lymph nodes on preoperative CT. This strategy resulted in a 16% incidence of positive N2 nodes discovered only at the time of thoracotomy.

For identifying N2 disease, chest CT scans had sensitivity and specificity rates of 69% and 71%, respectively. Using the chest CT scan plus mediastinoscopy was significantly more accurate (89% vs. 71%).
than using the chest CT scan alone for identifying N2 disease. When using CT scans, node positivity is based on the size of the lymph nodes. Therefore, the CT scan will miss small metastases that do not result in node enlargement. To address this issue, Arita et al specifically examined lung cancer metastases to normal size mediastinal lymph nodes in 90 patients and found an incidence of 16% (14/90) false-negative chest CT scans with histologic identification of occult N2 or N3 disease. Bronchoscopy is used in diagnosis and local staging of both central and peripheral lung lesions and is recommended for pretreatment evaluation of stage I to IIIA tumors. In patients who present with a solitary pulmonary nodule where the suspicion of malignancy is high, surgical resection without prior invasive testing may be reasonable.

As previously mentioned, CT scans have known limitations for evaluating the extent of lymph node involvement in lung cancer. PET scans have been used to help evaluate the extent of disease and to provide more accurate staging. The NCCN Panel reviewed the diagnostic performance of CT and PET scans. The NCCN Panel believes that PET scans can play a role in the evaluation and more accurate staging of NSCLC, for example, in identifying stage I (peripheral and central T1–2, N0), stage II, stage III, and stage IV diseases. However, FDG PET/CT is even more sensitive and is recommended by NCCN. PET/CT is typically done from the skull base to the knees; whole body PET/CT may also be done.

The NCCN Panel assessed studies that examined the sensitivity and specificity of chest CT scans for mediastinal lymph node staging. Depending on the clinical scenario, a sensitivity of 40% to 65% and a specificity of 45% to 90% were reported. Because they detect tumor physiology, as opposed to anatomy, PET scans may be more sensitive than CT scans. Moreover, if postobstructive pneumonitis is present, there is little correlation between the size of the mediastinal lymph nodes and tumor involvement. Chin et al found that PET, when used to stage the mediastinal nodes, was 78% sensitive and 81% specific with a negative predictive value of 89%. Kernstine et al compared PET scan to CT scan for identifying N2 and N3 disease in NSCLC. The PET scan was found to be more sensitive than the CT scan in identifying mediastinal node disease (70% vs. 65%). FDG PET/CT has been shown to be useful in restaging patients after adjuvant therapy.

When patients with early-stage disease are accurately staged using FDG PET/CT, inappropriate surgery is avoided. Positive FDG PET/CT scan findings for distant disease need pathologic or other radiologic confirmation (eg, MRI of bone). If the FDG PET/CT scan is positive in the mediastinum, the lymph node status needs pathologic confirmation. Transesophageal EUS-FNA and EBUS-TBNA have proven useful to stage patients or to diagnose mediastinal lesions; these techniques can be used instead of invasive staging procedures in select patients. When compared with CT and PET, EBUS-TBNA has a high sensitivity and specificity for staging mediastinal and hilar lymph nodes in patients with lung cancer. In patients with positive nodes on CT or PET, EBUS-TNBA can be used to clarify the results. In patients with negative findings on EBUS-TNBA, conventional mediastinoscopy can be done to confirm the results. Note that EBUS is also known as endosonography.

The routine use of bone scans (to exclude bone metastases) is not recommended. Brain MRI (with contrast), to rule out asymptomatic brain metastases, is recommended for patients with stage II, III, and IV disease to rule out metastatic disease if aggressive combined-modality therapy is being considered. Patients with stage IB NSCLC are less likely to have brain metastases; therefore, brain MRI is optional in this
setting and can be considered for select patients at high risk (eg, tumors greater than 5 cm, central location). If brain MRI cannot be done, then CT of the head with contrast is an option. Note that PET scans are not recommended for assessing whether brain metastases are present (see the NCCN Guidelines for Central Nervous System Cancers, available at www.NCCN.org).

Initial Therapy

As previously mentioned, accurate pathologic assessment and staging are essential before treatment for NSCLC, because management varies depending on the stage, histology, presence of genetic alterations, and PS. Before treatment, it is strongly recommended that determination of tumor resectability be made by board-certified thoracic surgeons who perform lung cancer surgery as a prominent part of their practice (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC). Principles of Radiation Therapy recommends doses for RT (see the NCCN Guidelines for NSCLC). In addition, the NCCN Guidelines also recommend regimens for chemotherapy and chemoradiation (see Chemotherapy Regimens for Neoadjuvant and Adjuvant Therapy, Chemotherapy Regimens Used with Radiation Therapy, and Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC). Targeted therapy is recommended for patients with metastatic NSCLC and positive test results for ALK or ROS1 rearrangements, BRAF V600E mutations, or sensitizing EGFR mutations.

Stage I, Stage II, and Stage IIIA Disease

Depending on the extent and type of comorbidity present, patients with stage I or a subset of stage II (T1–2, N1) tumors are generally candidates for surgical resection and mediastinal lymph node dissection. Definitive RT, including SABR, is recommended for patients with early-stage NSCLC who are medically inoperable or refuse surgery; RT can be considered as an alternative to surgery in patients at high risk of complications (see Stereotactic Ablative Radiotherapy in this Discussion and see Initial Treatment for Stage I and II in the NCCN Guidelines for NSCLC).276,293,296,362,369,747 In some instances, positive mediastinal nodes (N2) are discovered at surgery; in this setting, an additional assessment of staging and tumor resectability must be made, and the treatment (ie, inclusion of systematic mediastinal lymph node dissection) must be modified accordingly. Therefore, the NCCN Guidelines include 2 different tracks for T1–2, N2 disease (ie, stage IIIA disease): 1) T1–2, N2 disease discovered unexpectedly at surgical exploration; and 2) T1–2, N2 disease confirmed before thoracotomy. In the second case, an initial brain MRI (with contrast) and FDG PET/CT scan (if not previously done) are recommended to rule out metastatic disease.

For patients with clinical stage IIB (T3, N0) and stage IIIA tumors who have different treatment options (surgery, RT, or chemotherapy), a multidisciplinary evaluation is recommended. For the subsets of stage IIB (T3, N0) and stage IIIA (T4, N0–1) tumors, treatment options are organized according to the location of the tumor such as the superior sulcus, chest wall, proximal airway, or mediastinum.234 For each location, a thoracic surgeon needs to determine whether the tumor is resectable (see Principles of Surgical Therapy in the NCCN Guidelines for NSCLC).

For patients with resectable tumors (T3 invasion, N0–1) in the superior sulcus, the NCCN Panel recommends preoperative concurrent chemoradiation therapy followed by surgical resection and chemotherapy (see Initial Treatment for Superior Sulcus Tumors in the NCCN Guidelines for NSCLC). Preoperative concurrent chemoradiation followed by surgical resection of a superior sulcus tumor has shown
2-year survival in the 50% to 70% range. The overall 5-year survival rate is approximately 40%. Patients with possibly resectable superior sulcus tumors should undergo preoperative concurrent chemoradiation before surgical re-evaluation (including CT ± PET/CT). For patients with unresectable tumors (T4 extension, N0–1) in the superior sulcus, definitive concurrent chemoradiation is recommended. Two additional cycles of full-dose chemotherapy can be given if full-dose chemotherapy was not given concurrently with RT. The NCCN Panel now recommends durvalumab (category 2A) as consolidation therapy after treatment with definitive concurrent chemoradiation for patients with unresectable stage III NSCLC based on preliminary data from a phase 3 randomized trial (see Chemoradiation: Trial Data in this Discussion and the NCCN Guidelines for NSCLC). The recommendation for consolidation therapy with durvalumab occurs in multiple places in the NCCN Guidelines.

Surgical resection is the preferred treatment option for patients with tumors of the chest wall, proximal airway, or mediastinum (T3–4, N0–1). Other treatment options include preoperative chemotherapy or concurrent chemoradiation before surgical resection. For unresectable tumors (T4, N0–1) without pleural effusion, definitive concurrent chemoradiation (category 1) is recommended. If full-dose chemotherapy was not given as concurrent treatment, then an additional 2 cycles of full-dose chemotherapy can be administered (see the NCCN Guidelines for NSCLC).

Multimodality therapy is recommended for most patients with stage III NSCLC. For patients with stage IIIA disease and positive mediastinal nodes (T1–2, N2), treatment is based on the findings of pathologic mediastinal lymph node evaluation (see the NCCN Guidelines for NSCLC). Patients with negative mediastinal biopsy findings are candidates for surgery. For those patients with resectable lesions, mediastinal lymph node dissection or lymph node sampling should be performed during the operation. Those individuals who are medically inoperable should be treated according to the clinical stage (see the NCCN Guidelines for NSCLC). For patients with (T1–2) N2 node-positive disease, a brain MRI (with contrast) and FDG PET/CT scan (if not done previously) are recommended to search for distant metastases. When distant metastases are not present, the NCCN Panel recommends that the patient be treated with definitive concurrent chemoradiation therapy (see the NCCN Guidelines for NSCLC). Recommended therapy for metastatic disease depends on whether disease is in a solitary site or is widespread (see the NCCN Guidelines for NSCLC).

When a lung metastasis is present, it usually occurs in a patient with other systemic metastases; the prognosis is poor. Therefore, many of these patients are not candidates for surgery; however, systemic therapy is recommended. Although uncommon, patients with lung metastases but without systemic metastases have a better prognosis and are candidates for surgery (see Multiple Lung Cancers in this Discussion). Patients with separate pulmonary nodule(s) in the same lobe (T3, N0–1) or ipsilateral non-primary lobe (T4, N0–1) without other systemic metastases are potentially curable by surgery; 5-year survival rates are about 30%. For those with N2 nodes after surgery, concurrent chemoradiation is recommended for those with positive margins and a R2 resection; either sequential or concurrent chemoradiation is recommended after an R1 resection. Most NCCN Member Institutions favor concurrent chemoradiation for positive margins, but sequential chemoradiation is reasonable in frailer patients. For those with N2 nodes and negative margins, sequential chemotherapy (category 1) with RT is recommended. Chemotherapy
alone is recommended for those with N0–1 nodes (see the NCCN Guidelines for NSCLC). In patients with synchronous solitary nodules (contralateral lung), the NCCN Panel recommends treating them as 2 primary lung tumors if both are curable, even if the histology of the 2 tumors is similar (see the NCCN Guidelines for NSCLC).756

Multiple Lung Cancers

Patients with a history of lung cancer or those with biopsy-proven synchronous lesions may be suspected of having multiple lung cancers (see Clinical Presentation in the NCCN Guidelines for NSCLC).757,758 It is important to determine whether the multiple lung cancers are metastases or separate lung primaries (synchronous or metachronous), because most multiple lung tumors are metastases.61,284,759,760 Therefore, it is essential to determine the histology of the lung tumor (see Principles of Pathologic Review in the NCCN Guidelines for NSCLC). Infection and other benign diseases also need to be ruled out (eg, inflammatory granulomas).761,762 Although criteria have been established for diagnosing multiple lung cancers, no definitive method has been established before treatment.762-765 The Martini and Melamed criteria are often used to diagnose multiple lung cancers as follows: 1) the histologies are different; or 2) the histologies are the same, but there is no lymph node involvement and no extrathoracic metastases.765

Treatment of multiple lung cancers depends on status of the lymph nodes (eg, N0–1) and on whether the lung cancers are asymptomatic, symptomatic, or at high or low risk of becoming symptomatic (see Initial Treatment in the NCCN Guidelines for NSCLC).759,766-768 Patients should be evaluated in a multidisciplinary setting (eg, surgeons, radiation oncologists, medical oncologists). In patients eligible for definitive local therapy, parenchymal-sparing resection is preferred (see the Principles of Surgical Therapy in the NCCN Guidelines for NSCLC).758,759 VATS or SABR are reasonable options depending on the number and distribution of the tumors requiring local treatment.769 Multiple lung nodules (eg, solid, subsolid nodules) may also be detected on CT scans; some of these nodules can be followed with imaging, whereas others need to be biopsied or excised (see the Diagnostic Evaluation of Incidental Lung Nodules in this Discussion and the NCCN Guidelines for Lung Cancer Screening, available at www.NCCN.org).770

Stage IIIB Disease

Stage IIIB tumors comprise 2 unresectable groups, including: 1) T1–2, N3 tumors; and 2) T3–4, N2 tumors, which include contralateral mediastinal nodes (T4, N3). Surgical resection is not recommended in patients with T1–2, N3 disease. However, in patients with suspected N3 disease, the NCCN Guidelines recommend pathologic confirmation of nodal status (see Pretreatment Evaluation in the NCCN Guidelines for NSCLC).771,772 In addition, FDG PET/CT scans (if not previously done) and brain MRI (with contrast) should also be included in the pretreatment evaluation. If these imaging tests are negative, then treatment options for the appropriate nodal status should be followed (see the NCCN Guidelines for NSCLC). If N3 disease is confirmed, definitive concurrent chemoradiation (category 1) is recommended; 2 additional cycles of full-dose chemotherapy can be given if full-dose chemotherapy was not given concurrently with RT.302,525,568,773,774 As previously mentioned, durvalumab is recommended (category 2A) as consolidation therapy after treatment with definitive concurrent chemoradiation for patients with unresectable stage III NSCLC (see Chemoradiation: Trial Data in this Discussion and the NCCN Guidelines for NSCLC).266 For metastatic disease that is confirmed by FDG PET/CT scan and brain MRI (with contrast), treatment is described in the NCCN Guidelines for limited or metastatic disease.
For patients with T4, N2–3 disease (stage IIIB), surgical resection is not recommended. The initial workup includes biopsies of the N3 and N2 nodes. If these biopsies are negative, the same treatment options may be used as for stage IIIA (T4, N0–1) disease (see the NCCN Guidelines for NSCLC). If either the contralateral or ipsilateral mediastinal node is positive, definitive concurrent chemoradiation therapy is recommended (category 1) followed by 2 cycles of full-dose chemotherapy if full-dose chemoradiation was not given concurrently with RT as initial treatment (see the NCCN Guidelines for NSCLC). 302,525,568,773-775 Again, durvalumab is recommended after definitive concurrent chemoradiation for patients with unresectable stage III NSCLC. 266

Stage IV Disease
In general, systemic therapy is recommended for patients with metastatic disease (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC). 626 In addition, palliative treatment, including RT, may be needed during the disease course to treat localized symptoms, diffuse brain metastases, or bone metastases (see Therapy for Recurrence and Metastasis in the NCCN Guidelines for NSCLC). This section focuses on patients with limited metastatic disease; management of widespread distant metastases is described in another section (see Treatment of Recurrences and Distant Metastases in this Discussion and Systemic Therapy for Metastatic Disease in the NCCN Guidelines for NSCLC). Pleural or pericardial effusion is a criterion for stage IV, M1a disease. T4 with pleural effusion is classified as stage IV, M1a (see Table 3 in Staging in the NCCN Guidelines for NSCLC). 122 Pleural or pericardial effusions are malignant in 90% to 95% of patients; however, they may be related to obstructive pneumonitis, atelectasis, lymphatic or venous obstruction, or a pulmonary embolus. Therefore, pathologic confirmation of a malignant effusion by using thoracentesis or pericardiocentesis is recommended. In certain cases where thoracentesis is inconclusive, thoracoscopy may be performed. In the absence of nonmalignant causes (eg, obstructive pneumonitis), an exudate or sanguinous effusion is considered malignant regardless of the results of cytologic examination. If the pleural or pericardial effusion is considered negative for malignancy (M0), recommended treatment is based on the confirmed T and N stage (see the NCCN Guidelines for NSCLC). All pleural or pericardial effusions, whether malignant or not, are associated with unresectable disease in 95% of cases. 776 In patients with effusions that are positive for malignancy, the tumor is defined as M1a and is treated with local therapy (ie, ambulatory small catheter drainage, pleurodesis, and pericardial window) in addition to treatment as for stage IV disease (see the NCCN Guidelines for NSCLC). 777

Management of patients with distant metastasis in limited sites (ie, stage IVA, M1b) and good PS depends on the location and number of the metastases; the diagnosis is aided by mediastinoscopy, bronchoscopy, FDG PET/CT scan, and brain MRI (with contrast). The increased sensitivity of FDG PET/CT scans, compared with other imaging methods, may identify additional metastases and, thus, spare some patients from unnecessary futile surgery. Positive FDG PET/CT scan findings for distant disease need pathologic or other radiologic confirmation. If the FDG PET/CT scan is positive in the mediastinum, the lymph node status needs pathologic confirmation. Patients with limited oligometastatic disease (eg, brain metastases) and otherwise limited disease in the chest may benefit from aggressive local therapy to both the primary chest and metastatic sites. 778,779 The NCCN Panel recently revised the recommendations for treatment of limited brain metastases by decreasing recommendations for whole brain RT (see Whole Brain RT and Stereotactic Radiosurgery in this Discussion text). Clinicians are not using whole brain RT as often in patients with limited brain metastases because of concerns about neurocognitive
Aggressive local therapy may comprise surgery and/or definitive RT including SRS and SABR, and may be preceded or followed by chemotherapy. After progression on TKIs, patients with EGFR mutations may be able to continue with their current TKIs; local therapy can be considered to treat their limited metastases (eg, SRS to brain metastases or other sites, SABR for thoracic disease).

Postoperative Treatment
Chemotherapy or Chemoradiation
Post-surgical treatment options for patients with stage IA tumors (T1abc, N0) and with positive surgical margins (R1, R2) include re-resection (preferred) or RT (category 2B). Observation is recommended for patients with T1abc–T2ab, N0 tumors and with negative surgical margins (R0). Postoperative chemotherapy is a category 2A recommendation for patients with T2ab, N0 tumors and negative surgical margins who have high-risk features (including poorly differentiated tumors, vascular invasion, wedge resection, tumors >4 cm, visceral pleural involvement, and unknown lymph node status [Nx]) (see the NCCN Guidelines for NSCLC). If the surgical margins are positive in patients with T2ab, N0 tumors, options include: 1) re-resection (preferred) with (or without) chemotherapy; or 2) RT with (or without) chemotherapy (chemotherapy is recommended for T2b, N0).

The NCCN Panel recommends chemotherapy (category 1) for patients with negative surgical margins and stage IIB disease, including 1) T1abc–T2a, N1; 2) T2b, N1; or 3) T3, N0 disease. If surgical margins are positive in these patients, options after an R1 resection include: 1) re-resection and chemotherapy; or 2) chemoradiation (either sequential or concurrent). Options after an R2 resection include: 1) re-resection and chemotherapy; or 2) concurrent chemoradiation. Most NCCN Member Institutions favor concurrent chemoradiation for positive margins, but sequential chemoradiation is reasonable in frailer patients. Postoperative chemotherapy can also be used in patients with stage III NSCLC who have had surgery (see the NCCN Guidelines for NSCLC). Patients with T1–3, N2 or T3, N1 disease (discovered only at surgical exploration and mediastinal lymph node dissection) and positive margins may be treated with chemoradiation; either sequential or concurrent chemoradiation is recommended for an R1 resection, whereas concurrent chemoradiation is recommended for an R2 resection (see the NCCN Guidelines for NSCLC). Patients with negative margins may be treated with either 1) chemotherapy (category 1); or 2) sequential chemotherapy plus RT (for N2 only).

For stage IIIA superior sulcus tumors (T4 extension, N0–1) that become resectable after preoperative concurrent chemoradiation, resection followed by chemotherapy is recommended (see the NCCN Guidelines for NSCLC). Surgical reevaluation (including chest CT with or without contrast and with or without PET/CT) is done to determine whether the tumor is resectable after treatment. If the lesion remains unresectable after preoperative concurrent chemoradiation, the full course of definitive chemo/RT should be completed; an additional 2 cycles of chemotherapy can be given if full doses were not given with concurrent therapy. Among patients with chest wall lesions with T3 invasion–T4 extension, N0–1 disease, those who are initially treated with surgery (preferred) may receive chemotherapy alone if the surgical margins are negative. When surgical margins are positive, they may receive either 1) sequential or concurrent chemoradiation; or 2) re-resection and chemotherapy. As previously mentioned, most NCCN Member Institutions favor concurrent chemoradiation for positive margins, but sequential is reasonable in frailer patients. A similar treatment plan is
recommended for resectable tumors of the proximal airway or mediastinum (T3–4, N0–1).

For patients with stage III disease and positive mediastinal nodes (T1–3, N2) with no apparent disease progression after initial treatment, recommended treatment includes surgery with (or without) RT (if not given preoperatively) and/or with (or without) chemotherapy (category 2B for chemotherapy) (see the NCCN Guidelines for NSCLC). Alternatively, if the disease progresses, patients may be treated with either 1) local therapy using RT (if not given previously) with (or without) chemotherapy; or 2) systemic therapy. In patients with separate pulmonary nodules in the same lobe (T3, N0–1) or ipsilateral non-primary lobe (T4, N0–1), surgery is recommended. In patients with N2 disease and negative margins, options include 1) chemotherapy (category 1); or 2) sequential chemotherapy with radiation. If the resection margins are positive in patients with N2 disease, concurrent chemoradiation is recommended for an R2 resection, whereas either concurrent or sequential chemoradiation is recommended for an R1 resection. Concurrent chemoradiation is often used for positive margins, but sequential is reasonable in frailer patients.

Because patients with stage III disease have both local and distant failures, theoretically, the use of chemotherapy may eradicate micrometastatic disease obviously present but undetectable at diagnosis. The timing of this chemotherapy varies (see the NCCN Guidelines for NSCLC). Such chemotherapy may be given alone, sequentially, or concurrently with RT. In addition, chemotherapy could be given preoperatively or postoperatively in appropriate patients.

On the basis of clinical studies,513-515 the NCCN Panel recommends cisplatin combined with docetaxel, etoposide, gemcitabine, or vinorelbine for postoperative chemotherapy for all histologies in the NCCN Guidelines; other options include cisplatin combined with pemetrexed for nonsquamous NSCLC (see Chemotherapy Regimens for Neoadjuvant and Adjuvant Therapy in the NCCN Guidelines for NSCLC).236,557,574 For patients with comorbidities or those who cannot tolerate cisplatin, carboplatin may be combined with pemetrexed (nonsquamous only), paclitaxel, or gemcitabine.557,784 For the 2018 update (Version 1), the NCCN Panel expanded the list of regimens for sequential chemoradiation to include regimens that are also used for preoperative and postoperative chemotherapy (ie, cisplatin combined with pemetrexed [nonsquamous only], docetaxel, etoposide, gemcitabine, or vinorelbine; carboplatin combined with paclitaxel) and also added 2 new carboplatin regimens for patients with comorbidities or those not able to tolerate cisplatin, including 1) carboplatin/gemcitabine; and 2) carboplatin/pemetrexed (nonsquamous only).543-546

Three phase 3 trials have assessed preoperative chemotherapy followed by surgery compared with surgery alone in the treatment of stage III NSCLC.520,785-787 The S9900 trial (a SWOG study)—one of the largest randomized trials examining preoperative chemotherapy in early-stage NSCLC—assessed surgery alone compared with surgery plus preoperative paclitaxel/carboplatin in patients with stage IB/IIB and stage IIB/IIB NSCLC (excluding superior sulcus tumors). PFS and overall survival were improved with preoperative chemotherapy.786,787 All 3 studies showed a survival advantage for patients who received preoperative chemoradiotherapy. The 2 earlier phase 3 studies had a small number of patients, while the SWOG study was stopped early because of the positive results of the IALT study. A number of phase 2 studies have evaluated preoperative chemotherapy for stage III NSCLC, with (or without) RT, followed by surgery.788-790
Radiation Therapy

After complete resection of clinical early-stage NSCLC, postoperative RT has been found to be detrimental for pathologic N0 or N1 stage disease in a meta-analysis of small randomized trials using older techniques and dosing regimens and a population-based analysis of data from SEER. There was an apparent survival benefit of postoperative RT in patients with N2 nodal stage diagnosed surgically. The analysis of the ANITA trial also found that postoperative RT increased survival in patients with N2 disease who received chemotherapy. A review of the National Cancer Data Base concluded that postoperative RT and chemotherapy provided a survival advantage for patients with completely resected N2 disease when compared with chemotherapy alone. A recent meta-analysis also concluded that postoperative RT improves survival for patients with N2 disease. Postoperative sequential chemotherapy with RT is recommended for patients with T1–3, N2 disease and negative margins (see the NCCN Guidelines for NSCLC). A meta-analysis assessed postoperative chemotherapy with RT (or without) postoperative RT in patients mainly with stage III disease. In this meta-analysis, 70% of the eligible trials used sequential chemotherapy before RT; 30% used concurrent chemo/RT. Regimens included cisplatin/vinorelbine followed by RT or concurrent cisplatin/etoposide.

The ACR Appropriateness Criteria provide specific recommendations for postoperative therapy. Either concurrent or sequential chemoradiation may be used for postoperative therapy, depending on the type of resection and the setting (eg, N2 disease) (see the NCCN Guidelines for NSCLC). Concurrent chemo/RT is recommended for R2 resections, whereas either sequential or concurrent chemo/RT is recommended for R1 resections. Concurrent chemoradiation is often used for positive margins, but sequential is reasonable in frailer patients. Cisplatin/etoposide, cisplatin/vinblastine, and carboplatin/paclitaxel are chemoradiation regimens recommended by the NCCN Panel for all histologies (see Chemotherapy Regimens Used with Radiation Therapy in the NCCN Guidelines for NSCLC). Pemetrexed with either cisplatin or carboplatin may be used for concurrent chemoradiation in patients with nonsquamous NSCLC. When chemoradiation is recommended in the NCCN Guidelines, these regimens may be used for stage II to III disease.

A phase 3 trial (PROCLAIM) assessed concurrent thoracic RT with cisplatin/pemetrexed versus cisplatin/etoposide followed by consolidation chemotherapy in patients with unresectable stage III nonsquamous NSCLC. Both regimens were equivalent in terms of survival, but the cisplatin/pemetrexed regimen was associated with less neutropenia (24.4% vs. 44.5%; P < .001) and fewer grade 3 to 4 adverse events (64.0% vs. 76.8%; P = .001). The NCCN Panel recently deleted the cisplatin/etoposide consolidation regimen based on the PROCLAIM trial. In addition, the NCCN Panel clarified that the cisplatin/pemetrexed and carboplatin/paclitaxel regimens may be followed by consolidation chemotherapy alone for patients receiving definitive chemoradiation.

Surveillance

Because recurrence is common after treatment for NSCLC, surveillance with history and physical (H&P) and chest CT (with or without contrast) is recommended in the NCCN Guidelines. Data from randomized phase 3 trials are not available to clarify surveillance recommendations; therefore, the most appropriate schedules are controversial. The surveillance guidelines were recently revised by polling the NCCN Panel regarding their practice patterns. Details regarding the specific
surveillance schedules for patients with no clinical or radiographic evidence of disease after completion of definitive therapy are outlined in the algorithm based on stage (see Surveillance in the NCCN Guidelines for NSCLC). A chest CT scan with (or without) contrast and an H&P are recommended for the initial surveillance schedules (2–5 years) followed by an annual low-dose non-contrast–enhanced CT and an H&P. Patients treated with chemotherapy with (or without) RT who have residual abnormalities may require more frequent imaging.

It is important to note that the surveillance recommendations for NSCLC are different from the screening recommendations for individuals at high risk for lung cancer (see the NCCN Guidelines for Lung Cancer Screening). Data show that low-dose CT screening decreased the mortality from lung cancer; low-dose CT may be beneficial for identifying recurrences. FDG PET/CT or brain MRI is not routinely recommended for routine surveillance in patients without symptoms. But, PET may be useful for assessing CT scans that appear to show malignant neoplasms but may be radiation fibrosis, atelectasis, or other benign conditions. Areas previously treated with RT may remain FDG avid for up to 2 years; therefore, histologic confirmation of apparent “recurrent” disease is needed. Information about smoking cessation (eg, advice, counseling, therapy) should be provided for patients undergoing surveillance to improve their quality of life.

The NCCN Guidelines include information about the long-term follow-up care of NSCLC survivors (see Cancer Survivorship Care in the NCCN Guidelines for NSCLC). These recommendations include guidelines for routine cancer surveillance, immunizations, health monitoring, counseling for wellness and health promotion, and cancer screening. An analysis suggests that patients who survive lung cancer have a high symptom burden 1 year after diagnosis and therefore need management after treatment.

Treatment of Recurrences and Distant Metastases

Recurrences are subdivided into locoregional recurrences and distant metastases. Management of locoregional recurrences (eg, endobronchial obstruction, mediastinal lymph node recurrence, superior vena cava obstructions, severe hemoptysis) is described in the NCCN Guidelines (see Therapy for Recurrence and Metastasis in the NCCN Guidelines for NSCLC). For patients with endobronchial obstruction, relieving airway obstruction may increase survival, especially in patients who are severely compromised, and may improve the quality of life.

After treatment for the locoregional recurrence, observation or systemic therapy (category 2B for systemic therapy) is recommended if disseminated disease is not evident. Systemic therapy is recommended for disseminated disease. The type of systemic therapy depends on the histologic type, whether genetic alterations are present that can be treated with targeted therapy, and PS (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC). The NCCN Panel recommends (category 2A) response assessment after 2 cycles of systemic therapy then after every 2 to 4 cycles of therapy or when clinically indicated; assessment is done using CT with (or without contrast) of known sites of disease.

Management of distant metastases (eg, localized symptoms; bone, limited, diffuse brain, or disseminated metastases) is described in the NCCN Guidelines (see Therapy for Recurrence and Metastasis in the NCCN Guidelines for NSCLC). Palliation of symptoms throughout the disease course can be achieved with external-beam RT for distant metastases with localized symptoms, diffuse brain metastases, or bone metastasis (bisphosphonate or denosumab therapy can be considered). For patients at risk of fracture in weight-bearing bone, orthopedic stabilization and palliative RT are recommended.
Of note, recurrent and metastatic disease have historically been regarded as incurable. However, selected limited locoregional recurrences may be treated with curative intent therapy (surgery or RT with [or without] chemotherapy) (see Therapy for Recurrence and Metastasis in the NCCN Guidelines for NSCLC). Similarly, patients with limited-site oligometastatic disease and good PS may benefit from aggressive local therapies to the metastatic and primary sites, with clinical data suggesting the possibility of long-term survival (see Initial Treatment for Stage IVA, M1b: Limited Sites in the NCCN Guidelines for NSCLC). In addition, emerging clinical data suggest the feasibility of definitive reirradiation of local recurrences within prior RT fields using highly conformal techniques, although this should be limited to highly selected cases in specialty centers with appropriate expertise because of the potential for severe toxicity with high cumulative radiation doses to critical structures.

Denosumab or intravenous bisphosphonate therapy can be considered in patients with bone metastasis. In patients with NSCLC who have bone metastases, data suggest that denosumab increases median overall survival when compared with zoledronic acid (9.5 vs. 8 months). Denosumab and bisphosphonate therapy can be associated with severe hypocalcemia; patients with hypoparathyroidism and vitamin D deficiency are at increased risk for hypocalcemia. The FDA has approved the use of zoledronic acid and denosumab in patients with bone metastases from solid tumors.

For patients with recurrent and metastatic disease, the NCCN Guidelines recommend that histologic subtype should be determined before therapy so that the best treatment can be selected (see Metastatic Disease: Histologic Subtype in the NCCN Guidelines for NSCLC). In addition, biomarker testing for genetic alterations (ie, driver events) is recommended in patients with NSCLC, because targeted therapy has been shown to decrease tumor burden, decrease symptoms, and dramatically improve the quality of life for patients with specific genetic alterations. The number of available targeted agents is increasing. Several targeted agents have category 1 recommendations for first-line therapy based on phase 3 randomized trials such as erlotinib, gefitinib, afatinib, alectinib, ceritinib, and crizotinib. Additional targeted therapies for patients with other genetic alterations are also recommended, although there is less evidence for these agents and they have not been FDA approved for lung cancer (see Emerging Targeted Agents for Patients with Genetic Alterations in the NCCN Guidelines for NSCLC).

Biomarker testing for genetic alterations is recommended in the NCCN Guidelines. For the 2018 update (Version 1), the NCCN Panel added a new section describing the details of biomarker testing (see Principles of Molecular and Biomarker Analysis in the NCCN Guidelines for NSCLC). It is important to note that 1) several different tests may be used to identify the same biomarker including FDA-approved biomarker tests and validated laboratory tests done in CLIA-approved laboratories; and 2) biomarker testing is rapidly changing and improving. EGFR mutation testing (category 1) is recommended in patients with nonsquamous NSCLC (ie, adenocarcinoma, large cell carcinoma) or in NSCLC NOS, because EGFR TKIs are recommended for patients who are positive for sensitizing EGFR mutations (see EGFR Mutation Positive/First-Line Therapy in the NCCN Guidelines for NSCLC).

Testing for ALK rearrangements (category 1) is also recommended in patients with nonsquamous NSCLC, because ALK inhibitors are recommended for patients who are positive for ALK rearrangements. The NCCN Panel also recommends testing for ROS1 rearrangements (category 2A). Testing for ROS1 has typically been done using FISH; a validated NGS platform that can detect this
gene fusion may also be used. The NCCN Panel recommends that EGFR and BRAF mutation testing be done as part of broad molecular profiling (eg, multiplex mutation screening assays or NGS). Testing for ALK gene rearrangements can be done with FISH or with NGS if the platform is validated and can identify gene fusions. The NCCN Panel also recommends upfront PD-L1 expression testing (category 2A) before first-line therapy in patients with metastatic NSCLC to assess whether patients are candidates for pembrolizumab (see Pembrolizumab in this Discussion).

The following targeted agents are recommended (category 2A) for patients with specific genetic alterations: 1) crizotinib (for high-level MET amplification or METex14 mutation); 2) cabozantinib or vandetanib (for RET rearrangements); and 3) ado-trastuzumab for HER2 mutations.

For the 2018 update (Version 1), the NCCN Panel now recommends ado-trastuzumab emtansine (category 2A) for patients with HER2 mutations based on preliminary results from a recent phase 2 basket trial. The overall response rate was 33% (5/15 confirmed, 95% CI, 12–62). Minor toxicities (grade 1–2) included infusion reaction, thrombocytopenia and transaminitis; no treatment-related deaths were reported. Patients (n = 18) were mostly women (72%) and nonsmokers, and all had adenocarcinomas. The panel deleted single-agent therapy with trastuzumab or afatinib (both for HER2 mutations) for the 2018 update (Version 1), because response rates are lower and treatment is less effective when these agents are used for patients with HER2 mutations.

Targeted therapies—such as ceritinib, alectinib, brigatinib, and osimertinib—are recommended as subsequent therapies for patients with the indicated genetic alterations whose disease becomes resistant to first-line targeted therapies; other targeted therapies are being investigated for resistance.

As previously mentioned, recommendations from an international panel suggest that general histologic categories be avoided (eg, NSCLC), because more effective treatment can be selected when the histology is known. Patients with pure squamous cell carcinoma do not seem to have ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations; therefore, routine testing is not recommended in these patients. However, testing for ALK rearrangements, ROS1 rearrangements, or EGFR mutations can be considered in patients with squamous cell carcinomas who never smoked and those whose histology was determined using small biopsy specimens or mixed histology specimens. Treatment recommendations and eligibility criteria are described in the NCCN Guidelines for patients with
nonsquamous NSCLC (or NSCLC NOS) with negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown. Treatment recommendations and eligibility criteria for patients with squamous cell carcinoma are also described in the NCCN Guidelines. These recommendations are briefly summarized in the following paragraphs. Data supporting these recommendations are described in the following section (see Trial Data in this Discussion).

In general, 2-drug regimens (ie, doublet chemotherapy) are recommended over single agents (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC); targeted therapy is sometimes added to the 2-drug regimen (eg, the addition of bevacizumab to carboplatin/paclitaxel). Single-agent targeted therapy is recommended for patients with ALK or ROS1 rearrangements, sensitizing EGFR mutations, or other driver mutations (see Emerging Targeted Agents for Patients With Genetic Alterations in the NCCN Guidelines for NSCLC). Pembrolizumab is recommended as first-line therapy for patients with PD-L1 expression of 50% or more.

Doublet chemotherapy regimens, such as cisplatin/pemetrexed, are recommended (category 1) for patients with nonsquamous NSCLC and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown (also known as wild-type) (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC, the NCCN Drugs & Biologics Compendium [NCCN Compendium®] for NSCLC, and the NCCN Evidence Blocks™ for NSCLC). Pembrolizumab is recommended as first-line therapy for patients with PD-L1 expression of 50% or more.

deleting regimens that are rarely used in the United States. Deleted regimens include carboplatin/vinorelbine, cisplatin/vinorelbine, etoposide, irinotecan, and vinorelbine.

Bevacizumab/chemotherapy is another option if eligibility criteria are met for patients with nonsquamous NSCLC and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown. Previously, patients with brain metastases were excluded from receiving bevacizumab because of concerns about CNS hemorrhage; however, data suggest that bevacizumab can be used in patients with treated CNS metastases. The NCCN Panel recently deleted the bevacizumab/cisplatin/pemetrexed regimen because it is rarely used. Other chemotherapy options are also recommended, although some regimens may be more appropriate for certain patients, depending on histology, PS, and other factors (see Trial Data in this Discussion, Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC, the NCCN Compendium® for NSCLC, and the NCCN Evidence Blocks™ for NSCLC). A phase 3 randomized trial in elderly patients (70–89 years) with advanced NSCLC reported that combined therapy with weekly paclitaxel and monthly carboplatin improved survival when compared with single-agent therapy using either gemcitabine or vinorelbine (10.3 vs. 6.2 months).

Systemic therapy for elderly patients with advanced NSCLC needs to be carefully selected to avoid adverse reactions. Cisplatin/gemcitabine (category 1) is a recommended doublet option for patients with squamous cell carcinoma. Carboplatin/paclitaxel, carboplatin/gemcitabine (category 1 for both), and other regimens listed in the NSCLC algorithm may also be used (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC, the NCCN Compendium® for NSCLC, and the NCCN Evidence
Blocks™ for NSCLC). The NCCN Panel recently revised the lists of recommended doublet cytotoxic therapy regimens by deleting regimens that are rarely used for patients with squamous cell NSCLC and negative or unknown test results for ALK rearrangements, ROS1 rearrangements, or sensitizing EGFR mutations and with PD-L1 expression less than 50% or unknown. Deleted regimens include carboplatin/etoposide, carboplatin/vinorelbine, cisplatin/vinorelbine, cisplatin/gemcitabine/necitumumab, etoposide, irinotecan, and vinorelbine. Regimens containing pemetrexed or bevacizumab are not recommended for squamous cell carcinoma. Currently, there are fewer treatment options for patients with squamous cell carcinoma when compared with nonsquamous NSCLC. Research is ongoing to find newer options.6,86,175,857,858

Trial Data

Data show that platinum-based combination therapy is superior to best supportive care for patients with advanced, incurable disease. Cisplatin or carboplatin have been proven effective in combination with many of the following agents: docetaxel, etoposide, gemcitabine, paclitaxel (and albumin-bound paclitaxel), pemetrexed, and vinorelbine (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC).236,557,574-576,599,600,608 Carboplatin-based regimens are often used for patients with comorbidities or those who cannot tolerate cisplatin.859 Non-platinum regimens (eg, gemcitabine/docetaxel, gemcitabine/vinorelbine) are reasonable alternatives, because data show they are active and less toxic than platinum-based regimens.602-605,860

In a phase 2/3 trial (ECOG 4599), 878 patients were randomly assigned to either 1) bevacizumab in combination with paclitaxel/carboplatin; or 2) paclitaxel/carboplatin alone.235,861 Both regimens were well tolerated with selected toxicities. Patients receiving bevacizumab/paclitaxel/carboplatin showed an improved median survival (12.3 vs. 10.3 months, \(P = .003 \)) when compared to patients receiving paclitaxel/carboplatin alone.235 The overall 1-year and 2-year survival was 51% versus 44% and 23% versus 15%, respectively, in favor of the bevacizumab/paclitaxel/carboplatin arm.235 More significant toxicities were observed with bevacizumab/paclitaxel/carboplatin compared to paclitaxel/carboplatin (grade 4 neutropenia: 25.5% vs. 16.8%, grade 5 hemoptysis: 1.2% vs. 0%, and grade 3 hypertension: 6.8% vs. 0.5%). Treatment-related deaths were more common with bevacizumab/paclitaxel/carboplatin (15 patients) than with paclitaxel/carboplatin (2 patients) \((P = .001) \). An analysis of ECOG 4599 found that patients with adenocarcinoma histology receiving bevacizumab/paclitaxel/carboplatin had improved survival compared with chemotherapy alone (14.2 vs. 10.3 months).852 A trial (AVAiL) comparing cisplatin/gemcitabine with (or without) bevacizumab did not show an increase in survival with the addition of bevacizumab.862,863

A noninferiority trial in 1725 patients with advanced NSCLC (either stage IIIb or IV; most were stage IV) assessed cisplatin/gemcitabine compared with cisplatin/pemetrexed.236 Patients with either adenocarcinoma or large cell carcinoma (ie, nonsquamous NSCLC) had improved survival with cisplatin/pemetrexed (adenocarcinoma: 12.6 vs. 10.9 months). Patients with squamous cell carcinoma had improved survival with the cisplatin/gemcitabine regimen (10.8 vs. 9.4 months). When compared with the cisplatin/gemcitabine regimen, the cisplatin/pemetrexed regimen had significantly lower rates of grade 3 or 4 neutropenia, anemia, and thrombocytopenia \((P \leq .001) \); febrile neutropenia \((P = .002) \); and alopecia \((P < .001) \). Treatment-related deaths were similar for both regimens (cisplatin/pemetrexed, 9 patients [1.0%]; cisplatin/gemcitabine, 6 patients [0.7%]). An analysis of three
phase 3 trials confirmed that pemetrexed improves survival for patients with nonsquamous NSCLC in first-line, subsequent, and maintenance therapy.

Number of Cycles of First-Line Systemic Therapy

Patients receiving first-line systemic therapy for advanced disease should be evaluated for tumor response with a CT scan. Response assessment should occur after 2 cycles and then every 2 to 4 cycles using CT of known sites of disease (with or without contrast) or when clinically indicated. Approximately 25% of patients show disease progression after the initial cycle of chemotherapy; subsequent therapy is recommended for these patients (see the NCCN Guidelines for NSCLC). Patients with responsive or stable disease can continue to receive a total of 4 to 6 cycles of systemic therapy. The NCCN Guidelines do not recommend continuing chemotherapy beyond 4 to 6 cycles.

Data from the PARAMOUNT trial suggest that 4 cycles of platinum-based therapy is not optimal; tumors can shrink between 4 to 6 cycles of chemotherapy. However, patients may not be able to tolerate more than 4 cycles of chemotherapy, and most of the maintenance trials used only 4 cycles of chemotherapy. A meta-analysis suggests that continuing the initial regimen beyond 4 to 6 cycles is associated with increased PFS; patients have more adverse events. A phase 3 randomized trial suggested that continuing chemotherapy beyond 4 to 6 cycles is not beneficial; however, many patients assigned to a longer duration of therapy did not receive the planned number of cycles. In this phase 3 trial, taxane-based regimens were used and patients had increasing neurotoxicity as more cycles were used.

Many patients with adenocarcinoma receive pemetrexed-based regimens and not taxane-based regimens. Pemetrexed-based regimens are less toxic than taxane-based regimens. Thus, data suggesting that more than 6 cycles of first-line chemotherapy are not appropriate may only apply to taxane-based regimens. Studies report that 60% of patients were able to receive 6 cycles of pemetrexed-based chemotherapy (and had a low incidence of toxicity), whereas only 42% were able to receive more than 5 cycles of taxane-based chemotherapy and often stopped therapy because of neurotoxicity.

Maintenance Therapy

For patients with nonsquamous NSCLC who are negative or have unknown rearrangements, mutations, or PD-L1 expression, maintenance therapy is another option for those with responsive or stable disease after first-line systemic therapy (see the NCCN Guidelines for NSCLC). Continuation maintenance therapy includes bevacizumab (category 1), pemetrexed (category 1), bevacizumab/pemetrexed (category 2A), or gemcitabine (category 2B) (see the NCCN Guidelines for NSCLC). Switch maintenance therapy for these patients includes pemetrexed (category 2A). For the 2018 update (Version 1), the NCCN Panel revised the recommendation for switch maintenance therapy with pemetrexed to category 2A from 2B based on clinical experience.

A phase 3 randomized trial (n = 663) assessed the effect of best supportive care with (or without) switch maintenance pemetrexed in patients with advanced NSCLC who had received platinum-based chemotherapy but had not progressed. In patients with nonsquamous NSCLC, overall survival was 13.4 months (95% CI, 11.9–15.9) with pemetrexed compared with 10.6 months (8.7–12.0) with placebo (HR, 0.50; 95% CI, 0.42–0.61, P < .0001). Close observation is another
option. Maintenance therapy is discussed in greater detail earlier in this Discussion (see Combined Modality Therapy: Maintenance Therapy).

The NCCN Panel recently deleted the recommendation for erlotinib as switch maintenance therapy (and as subsequent therapy) for patients with nonsquamous NSCLC and PS 0 to 2 but without EGFR mutations based on results from a randomized trial (IUNO) and revised indication by the FDA. The data showed that overall survival and PFS were not improved in patients receiving erlotinib when compared with placebo. For patients with squamous cell carcinoma, gemcitabine (category 2B) is recommended as continuation maintenance therapy (see the NCCN Guidelines for NSCLC). Docetaxel is recommended (category 2B) as switch maintenance therapy for these patients. Close observation is a category 2A option. As previously mentioned, a phase 3 randomized trial compared using maintenance therapy with either gemcitabine or erlotinib after initial cytotoxic therapy with cisplatin-gemcitabine. Continuation maintenance therapy with single-agent gemcitabine increased PFS to a greater extent (3.8 months) than switch maintenance therapy with erlotinib (2.9 months) when compared with observation (1.9 months). The benefits of maintenance therapy were very slight; therefore, the recommendation is only category 2B for maintenance therapy with gemcitabine. A phase 3 trial assessed switch maintenance therapy with docetaxel given either immediately after chemotherapy or delayed until progression. Switch maintenance therapy with docetaxel is a category 2B recommendation in the NCCN Guidelines, because many patients in the delayed chemotherapy arm did not receive docetaxel.

Continuation of Targeted Therapy After Progression on Initial Therapy
Patients may continue to derive benefit from EGFR TKIs after disease progression on first-line therapy; discontinuation of these TKIs leads to more rapid progression of disease (symptoms, tumor size, and FDG-avidity on PET scan). This strategy mirrors the experience in other oncogene-addicted cancers, such as ALK inhibitors. Because of previous restrictions on the use of gefitinib, erlotinib was commonly used in the United States in patients with sensitizing EGFR mutations. Gefitinib was re-approved by the FDA based on a phase 4 study and is available in the United States. After development of acquired resistance in patients with lung adenocarcinoma and sensitizing EGFR mutations, erlotinib, gefitinib, or afatinib may be continued, but osimertinib as second-line therapy is also an option for select patients; local therapy should be considered (eg, SRS to brain metastases or other sites, SABR for thoracic disease).

The NCCN Panel recommends continuing erlotinib, gefitinib, or afatinib and considering local therapy in patients with asymptomatic progression; however, treatment varies for patients with symptomatic progression (see Sensitizing EGFR Mutation Positive: Subsequent Therapy in the NCCN Guidelines for NSCLC). Osimertinib is recommended (category 1) for patients with symptomatic brain metastases and sensitizing EGFR mutations who have progressed on erlotinib, gefitinib, or afatinib. Another option is to continue use of erlotinib, gefitinib, or afatinib for these patients; additional therapy may be added or substituted (eg, local therapy, systemic therapy). First-line systemic therapy options are recommended for patients with multiple symptomatic lesions who are negative for T790M; osimertinib is recommended (category 1) for patients positive for T790M.

Accumulating data suggest how cancers become resistant to EGFR inhibitors. The most common known mechanism is the acquisition of T790M (which is a secondary mutation in EGFR), which renders the kinase resistant to erlotinib, gefitinib, or afatinib. Therefore, if patients are T790M positive, osimertinib is recommended (category 1).
and erlotinib, gefitinib, or afatinib are discontinued. Amplification of the MET oncogene is another validated resistance mechanism. To overcome resistance, EGFR must still be inhibited. In the case of MET amplification, new inhibitors must be added to the EGFR inhibitor; EGFR inhibition is still required to induce remission. Furthermore, data by Riely et al show that when cancers start to progress, which were once sensitive to EGFR inhibitors, discontinuation of the EGFR TKI can lead to a much more accelerated progression of the cancer.868,876 Thus, continuing EGFR TKIs is beneficial in many patients even after they develop resistance to EGFR TKIs.870

NCCN also recommends osimertinib (category 2A) as first-line therapy for patients with sensitizing EGFR mutations (see Osimertinib in this Discussion). The NCCN Panel recently added a new algorithm for patients with sensitizing EGFR mutations who progress during or after first-line therapy with osimertinib (see the NCCN Guidelines for NSCLC). After progression on osimertinib, patients may continue to derive benefit from osimertinib; other options are also recommended (see Second-Line and Beyond (Subsequent) Systemic Therapy in this Discussion).

For the 2018 update (Version 1), the NCCN Panel added a new algorithm for patients with ALK rearrangements who progress during or after first-line therapy with alectinib or ceritinib (see the NCCN Guidelines for NSCLC). After progression on alectinib or ceritinib, patients may continue to derive benefit from alectinib or ceritinib; other options are also recommended (see Second-Line and Beyond (Subsequent) Systemic Therapy in this Discussion).

Second-Line and Beyond (Subsequent) Systemic Therapy

The phrase subsequent therapy was recently substituted for the terms second-line, third-line, and beyond systemic therapy, because the line of therapy may vary depending on previous treatment with targeted agents. Subsequent systemic therapy regimens for patients who have disease progression during or after first-line therapy are described in the NSCLC algorithm and depend on the specific genetic alteration, the histologic subtype, and whether the patient has symptoms (see the NCCN Guidelines for NSCLC).877-886 The NCCN Panel recommends response assessment of known sites of disease with CT (with contrast) every 6 to 12 weeks in patients receiving subsequent therapy. Note that traditional RECIST response criteria (1.1) are used to assess response for most types of systemic therapy, but different response criteria may be useful for assessing response in patients receiving immunotherapy.192,810,812,887,888

The NCCN Panel recommends immune checkpoint inhibitors as preferred agents for subsequent therapy in patients with metastatic NSCLC based on improved survival rates, longer duration of response, and fewer adverse events when compared with cytotoxic chemotherapy (see Nivolumab, Pembrolizumab, and Atezolizumab in this Discussion).261,264,694 Human immune-checkpoint–inhibitor antibodies inhibit the PD-1 receptor or PD-L1, which improves antitumor immunity; PD-1 receptors are expressed on activated cytotoxic T cells.261-263 The NCCN Panel recommends nivolumab (category 1) as subsequent therapy for patients with metastatic nonsquamous or squamous NSCLC based on phase 3 randomized trials (CheckMate 017 and CheckMate 057) and FDA approvals.261,674 The NCCN Panel recommends pembrolizumab (category 1) as subsequent therapy for patients with metastatic nonsquamous or squamous NSCLC and PD-L1 expression based on a phase 2/3 randomized trial (KEYNOTE-001 trial, KEYNOTE-002 trial, and FDA approval).271,688 The NCCN Panel also recommends atezolizumab (category 1) as subsequent therapy for patients with metastatic nonsquamous or squamous NSCLC based on a
The NCCN Panel recommends osimertinib (category 1) as subsequent therapy for patients with metastatic EGFR T790M-positive NSCLC who have progressed on erlotinib, gefitinib, or afatinib therapy based on recent data and on the FDA approval (see Osimertinib in this Discussion). For patients with sensitizing EGFR mutations who progress during or after first-line erlotinib, afatinib, or gefitinib, recommended subsequent therapy depends on whether the progression is asymptomatic or symptomatic and includes: 1) considering local therapy; 2) continuing erlotinib, afatinib, or gefitinib; 3) taking osimertinib; or 4) taking a first-line systemic therapy regimen for nonsquamous NSCLC (such as cisplatin/pemetrexed). The NCCN Panel also recommends osimertinib (category 1) for patients with T790M who have brain metastases and have progressed on erlotinib, afatinib, or gefitinib. Data suggest that an afatinib/cetuximab regimen may be useful for patients who have progressed after receiving erlotinib, afatinib, or gefitinib and after chemotherapy. Patients with T790M-positive and T790M-negative tumors had a similar response rate to an afatinib/cetuximab regimen (32% vs. 25%; \(P = .341 \)). The NCCN Panel recommends (category 2A) considering an afatinib/cetuximab regimen for patients who have progressed after receiving erlotinib, afatinib, or gefitinib and chemotherapy based on these data.

The NCCN Panel recently added a new subsequent therapy algorithm for patients with advanced NSCLC and sensitizing EGFR mutations who progress during or after first-line therapy with osimertinib. Recommended subsequent therapy depends on whether the progression is asymptomatic or symptomatic and includes: 1) considering local therapy; and/or 2) continuing osimertinib or switching to a first-line systemic therapy regimen for nonsquamous NSCLC (such as cisplatin/pemetrexed). There are no data to support using erlotinib, gefitinib, or afatinib after progression on osimertinib.

Among patients with sensitizing EGFR mutations, no improvement in overall survival has been noted in the phase 3 trials assessing subsequent therapy with pembrolizumab, nivolumab, or atezolizumab compared to docetaxel, but there were not enough patients with these mutations to determine whether there were statistically significant differences (see next paragraph). Immunotherapy was not worse than chemotherapy and was better tolerated. In the phase 3 trials for pembrolizumab, nivolumab, or atezolizumab versus docetaxel as subsequent therapy for patients with metastatic NSCLC, subset analyses were done in patients with EGFR mutations to determine the best subsequent therapy. The HRs for overall survival do not favor docetaxel over nivolumab (HR, 1.18; CI, 0.69–2.0), pembrolizumab (HR, 0.88; CI, 0.45–1.7), or atezolizumab (HR, 1.24; CI, 0.7–2.2); the CIs for the HRs are wide probably because there were so few patients with EGFR mutations. The HRs for PFS do favor docetaxel for patients with EGFR mutations when compared with either pembrolizumab (HR, 1.79; CI, 0.94–3.42) or nivolumab (HR, 1.46; CI, 0.90–2.37). But again, the CIs are wide. The evidence is weak for recommending docetaxel, pembrolizumab, nivolumab, or atezolizumab as subsequent therapy for patients with EGFR mutations. Data suggest that patients with EGFR mutations or ALK rearrangements have a low response rate to PD-1 or PD-L1 inhibitors when compared with patients without these genetic alterations (response rate, 3.6% vs. 23%, respectively). For the 2018 update (Version 1), the NCCN Panel deleted the recommendation for pembrolizumab as subsequent therapy for patients with PD-L1 expression of 50% or more and genetic alterations such as EGFR mutations or ROS1 rearrangements.
For patients with ALK rearrangements who progress during or after first-line targeted therapy, recommended subsequent therapy also depends on whether the progression is asymptomatic or symptomatic and includes: 1) considering local therapy; 2) continuing alectinib, crizotinib, or ceritinib; 3) taking ceritinib (if not previously given); 4) taking alectinib (if not previously given); 5) taking brigatinib; or 6) taking a first-line systemic therapy regimen for nonsquamous NSCLC. After further progression on subsequent targeted therapy, first-line combination chemotherapy options for NSCLC are recommended for patients with PS of 0 to 1 such as carboplatin/paclitaxel. Other chemotherapy options are also recommended for patients with PS 2, such as docetaxel (see Systemic Therapy for Advanced or Metastatic Disease in the NCCN Guidelines for NSCLC). Note that immune checkpoint inhibitors are not recommended as subsequent therapy for patients with ALK rearrangements. Patients with ALK-positive NSCLC and very high PD-L1 expression do not respond to pembrolizumab. In addition, those with MET exon 14 mutations and high PD-L1 expression also do not respond to immunotherapy.

Most patients with NSCLC do not have ALK rearrangements, ROS1 rearrangements, BRAF V600E mutations, or sensitizing EGFR mutations. For patients with all histologic subtypes and PS of 0 to 2 but without these genetic alterations who have disease progression during or after initial cytotoxic therapy, recommended subsequent systemic therapy options include immunotherapy (nivolumab [category 1], pembrolizumab [category 1] if not previously given, or atezolizumab [category 1]) or chemotherapy (docetaxel with or without ramucirumab, or gemcitabine if not already given; pemetrexed is recommended for patients with nonsquamous NSCLC). The NCCN Panel recommends immune checkpoint inhibitors—nivolumab, pembrolizumab, and atezolizumab—as preferred options for subsequent therapy for all histologic subtypes based on improved survival rates, longer duration of response, and fewer adverse events when compared with cytotoxic chemotherapy (see Nivolumab, Pembrolizumab, and Atezolizumab in this Discussion).

Immunotherapy is superior to docetaxel; however, some patients cannot tolerate immunotherapy. Ramucirumab/docetaxel is an option for all histologic subtypes for subsequent therapy based on a phase 3 randomized trial (see Ramucirumab in this Discussion). Docetaxel has been proven superior to best supportive care, vinorelbine, or ifosfamide with improved survival and quality of life. When compared with docetaxel, pemetrexed has similar median survival but less toxicity. Pemetrexed is recommended in patients with nonsquamous NSCLC. Docetaxel is recommended for patients with wild-type EGFR tumors based on 2 randomized trials comparing erlotinib versus docetaxel. In patients with PS of 3 to 4, best supportive care is recommended (see the NCCN Guidelines for NSCLC).

The NCCN Panel recently deleted the recommendation for erlotinib as subsequent therapy (and as switch maintenance therapy) for patients with nonsquamous NSCLC and PS of 0 to 2 but without EGFR mutations based on results from a randomized trial (IUNO) and revised indication by the FDA. Data showed that overall survival and PFS were not improved in patients receiving erlotinib when compared with placebo. Recently, the NCCN Panel deleted erlotinib as an option for subsequent therapy for patients with squamous cell NSCLC based on a study comparing afatinib with erlotinib; this study was statistically significant but not clinically significant. Overall survival was slightly better in the afatinib group than in the erlotinib group (median overall survival...
survival, 7.9 months [95% CI, 7.2–8.7] vs. 6.8 months [95% CI, 5.9–7.8]; HR, 0.81 [95% CI, 0.69–0.95], \(P = .0077 \); however, almost 60% of patients in each arm had grade 3 or higher adverse events. In contrast, the median overall survival was 9.2 months with nivolumab compared with 6.0 months for docetaxel for patients with squamous cell NSCLC. \(^{264}\)

In addition, only 7% of patients receiving nivolumab had grade 3 or higher adverse events. Erlotinib and afatinib are not recommended as second-line therapy for squamous cell carcinoma based on a phase 3 randomized trial showing low response rates; they are less efficacious and safe compared to other available options. \(^{632}\)

Doublet chemotherapy options used for initial cytotoxic therapy are recommended for patients with metastatic NSCLC (eg, carboplatin/paclitaxel) and genetic alterations who progress with symptomatic systemic multiple lesions after first-line targeted therapy. \(^{235}\)

Recent data (IMPRESS) indicate that chemotherapy should be used alone and not be combined with EGFR inhibitors such as gefitinib in patients who have progressed on gefitinib. \(^{896}\) Erlotinib, gefitinib, afatinib, or osimertinib may be continued in patients with sensitizing \textit{EGFR} mutations who have progressed after first-line therapy, depending on the type of progression. \(^{176,842,871,872}\) Osimertinib is recommended for patients with T790M whose disease becomes resistant to erlotinib, afatinib, or gefitinib. \(^{199}\) Afatinib/cetuximab may be considered for patients with sensitizing \textit{EGFR} mutations who have progressed after erlotinib, gefitinib, or afatinib and after doublet chemotherapy. \(^{889}\) Ceritinib, alectinib, or brigatinib are recommended in patients with ALK-positive NSCLC who have progressed after first-line therapy with crizotinib or for patients who are intolerant to crizotinib. \(^{134,234,242}\) Flare phenomenon may occur in some patients who discontinue ALK inhibitors. If disease flare occurs, then ALK inhibitors should be restarted. \(^{869,897}\) Subsequent therapy is recommended after second disease progression in patients with advanced NSCLC and a PS of 0 to 2 if the following agents have not already been given: 1) immune checkpoint inhibitors including nivolumab, pembrolizumab, and atezolizumab (all are category 2A); 2) docetaxel with or without ramucirumab (category 2B for both); 3) gemcitabine (category 2B); or 4) pemetrexed (nonsquamous only) (category 2B). \(^{878,894,898,899}\)
Summary

The NCCN Guidelines for NSCLC are updated at least once a year by the NCCN Panel; there were 8 updates in 2017. The Summary of the Guidelines Updates describes the most recent revisions to the algorithms, which have been incorporated into this updated Discussion text (see the NCCN Guidelines for NSCLC). Some of the recent revisions for the 2018 update (Version 1) include: 1) ceritinib was added as a new option and crizotinib was designated as a preferred option for patients with ROS1-positive metastatic NSCLC; 2) a new section was added to Principles of Molecular and Biomarker Analysis; 3) the Principles of Pathologic Review were revised; and 4) the AJCC staging system was updated to the eighth edition, which becomes effective on January 1, 2018. In addition, the NCCN Panel expanded the list of regimens for sequential chemoradiation to include regimens that are also used for preoperative and postoperative chemotherapy (ie, cisplatin combined with pemetrexed [nonsquamous only], docetaxel, etoposide, gemcitabine, or vinorelbine; carboplatin combined with paclitaxel) and also added 2 new carboplatin regimens for patients with comorbidities or those not able to tolerate cisplatin, including 1) carboplatin/gemcitabine; and 2) carboplatin/pemetrexed (nonsquamous only).
References

47. Gonzales D, Hajek P, Plaimm L, et al. Retreatment with varenicline for smoking cessation in smokers who have previously taken varenicline: a randomized, placebo-controlled trial. Clin Pharmacol Ther

162. Lovly CM, Horn L. Molecular profiling of lung cancer. My Cancer Genome; 2016. Available at: https://www.mycancergenome.org/content/disease/lung-cancer/.

289. Altorki NK, Yip R, Hanaoka T, et al. Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid

357. Expert Panel on Radiation Oncology-Brain M, Lo SS, Gore EM, et al. ACR Appropriateness Criteria(R) pre-irradiation evaluation and

408. Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat

422. Chang JY, Zhang X, Wang X, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III...

463. Kilburn JM, Kuremsky JG, Blackstock AW, et al. Thoracic re-irradiation using stereotactic body radiotherapy (SBRT) techniques as first or second course of treatment. Radiother Oncol

503. Sun A, Bae K, Gore EM, et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced

613. Garon EB, Ciuleanu TE, Arrieta O, et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 2014;384:665-673. Available at:

684. Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody,

694. Barlesi F, Park K, Ciardiello F. Primary analysis from OAK, a randomized phase III study comparing atezolizumab with docetaxel in 2L/3L NSCLC [abstract] [abstract]. Presented at the 2016 Annual Meeting European Society for Medical Oncology (ESMO) Copenhagen, Denmark. LBA44.

2006;1:1042-1058. Available at: